亚马逊AWS官方博客
Tag: Amazon SageMaker Canvas
Amazon SageMaker Canvas 在翻转课堂中的二分类预测应用
本篇文章里,作者结合 Amazon SageMaker Canvas 做了应用测评,基于真实场景和脱敏数据对商业场景进行了一次深度分析。
在 AWS 搭建无代码可视化的数据分析和建模平台
本文以汽车行业的故障分析为例,演示如何在亚马逊云科技上构建一套无代码数据分析平台,业务人员不需要有编程能力、 SQL 或任何机器学习的先验知识,即可自行根据业务场景和具体需求,自助式的上传导入数据做出分析,从而帮助业务人员以最短的时间,最方便的使用数据。
构建、共享、部署:业务分析师和数据科学家如何使用无代码机器学习和 Amazon SageMaker Canvas 缩短面市时间
机器学习(ML)可以优化多个垂直行业的核心业务功能(例如需求预测、信用评分、定价、预测客户流失、确定下一次最佳商品推荐、预测延迟发货及提高生产质量),从而帮助企业增加收入、推动业务增长并降低成本。传统机器学习开发周期需要几个月的时间,且需要稀缺的数据科学和机器学习工程技能。分析师对机器学习模型的想法往往会积压很长时间,因为需要等待数据科学团队有空来实现,而数据科学家的精力却往往放在需要其全部技能的更复杂的机器学习项目上。
使用Amazon Redshift ML构建机器学习应用
自从2018年起,亚马逊云科技发布了一系列的产品和服务,例如Amazon SageMaker,Amazon Aurora ML,Amazon Redshift ML,和2021年reInvent发布的Amazon SageMaker Canvas,使得不同角色的工程师越来越容易构建机器学习应用,降低应用机器学习的门槛,以实现普惠机器学习。本系列文章将以上述产品为核心,从不同的角度帮助企业中不同部门的人员构建机器学习应用。
基于 Amazon SageMaker Canvas 无代码构建分类模型
在本篇文章中,我们将介绍如何无需写代码即可构建机器学习应用,Amazon SageMaker Canvas提供无代码、可视化的工作环境,即使没有机器学习背景知识,也可以基于自己业务需要构建机器学习模型。