AWS Big Data Blog
Introducing Amazon MWAA larger environment sizes
Amazon Managed Workflows for Apache Airflow (Amazon MWAA) is a managed service for Apache Airflow that streamlines the setup and operation of the infrastructure to orchestrate data pipelines in the cloud. Customers use Amazon MWAA to manage the scalability, availability, and security of their Apache Airflow environments. As they design more intensive, complex, and ever-growing data processing pipelines, customers have asked us for additional underlying resources to provide greater concurrency and capacity for their tasks and workflows.
To address this, today, we are announcing the availability of larger environment classes in Amazon MWAA. In this post, we dive into the capabilities of these new XL and 2XL environments, the scenarios they are well suited for, and how you can set up or upgrade your existing Amazon MWAA environment to take advantage of the increased resources.
Current challenges
When you create an Amazon MWAA environment, a set of managed Amazon Elastic Container Service (Amazon ECS) with AWS Fargate containers are provisioned with defined virtual CPUs and RAM.
As you work with larger, complex, resource-intensive workloads, or run thousands of Directed Acyclic Graphs (DAGs) per day, you may start exhausting CPU availability on schedulers and workers, or reaching memory limits in workers. Running Apache Airflow at scale puts proportionally greater load on the Airflow metadata database, sometimes leading to CPU and memory issues on the underlying Amazon Relational Database Service (Amazon RDS) cluster. A resource-starved metadata database may lead to dropped connections from your workers, failing tasks prematurely.
To improve performance and resiliency of your tasks, consider following Apache Airflow best practices to author DAGs. As an alternative, you can create multiple Amazon MWAA environments to distribute workloads. However, this requires additional engineering and management effort.
New environment classes
With today’s release, you can now create XL and 2XL environments in Amazon MWAA in addition to the existing environment classes. They have two and four times the compute, and three and six times the memory, respectively, of the current large Amazon MWAA environment instance class. These instances add compute and RAM linearly to directly improve capacity and performance of all Apache Airflow components. The following table summarizes the environment capabilities.
. | Scheduler and Worker CPU / RAM | Web Server CPU / RAM |
Concurrent Tasks | DAG Capacity |
mw1.xlarge | 8 vCPUs / 24 GB | 4 vCPUs / 12 GB | 40 tasks (default) | Up to 2000 |
mw1.2xlarge | 16 vCPUs / 48 GB | 8 vCPUs / 24 GB | 80 tasks (default) | Up to 4000 |
With the introduction of these larger environments, your Amazon Aurora metadata database will now use larger, memory-optimized instances powered by AWS Graviton2. With the Graviton2 family of processors, you get compute, storage, and networking improvements, and the reduction of your carbon footprint offered by the AWS family of processors.
Pricing
Amazon MWAA pricing dimensions remains unchanged, and you only pay for what you use:
- The environment class
- Additional worker instances
- Additional scheduler instances
- Metadata database storage consumed
You now get two additional options in the first three dimensions: XL and 2XL for environment class, additional workers, and schedulers instances. Metadata database storage pricing remains the same. Refer to Amazon Managed Workflows for Apache Airflow Pricing for rates and more details.
Observe Amazon MWAA performance to plan scaling to larger environments
Before you start using the new environment classes, it’s important to understand if you are in a scenario that relates to capacity issues, such as metadata database out of memory, or workers or schedulers running at high CPU usage. Understanding the performance of your environment resources is key to troubleshooting issues related to capacity. We recommend following the guidance described in Introducing container, database, and queue utilization metrics for the Amazon MWAA environment to better understand the state of Amazon MWAA environments, and get insights to right-size your instances.
In the following test, we simulate a high load scenario, use the CloudWatch observability metrics to identify common problems, and make an informed decision to plan scaling to larger environments to mitigate the issues.
During our tests, we ran a complex DAG that dynamically creates over 500 tasks and uses external sensors to wait for a task completion in a different DAG. After running on an Amazon MWAA large environment class with auto scaling set up to a maximum of 10 worker nodes, we noticed the following metrics and values in the CloudWatch dashboard.
The worker nodes have reached maximum CPU capacity, causing the number of queued tasks to keep increasing. The metadata database CPU utilization has peaked at over 65% capacity, and the available database free memory has been reduced. In this situation, we could further increase the worker nodes to scale, but that would put additional load on the metadata database CPU. This might lead to a drop in the number of worker database connections and available free database memory.
With new environment classes, you can vertically scale to increase available resources by editing the environment and selecting a higher class of environment, as shown in the following screenshot.
From the list of environments, we select the one in use for this test. Choose Edit to navigate to the Configure advanced settings page, and select the appropriate xlarge or 2xlarge environment as required.
After you save the change, the environment upgrade will take 20–30 minutes to complete. Any running DAG that got interrupted during the upgrade is scheduled for a retry, depending on the way you configured the retries for your DAGs. You can now choose to invoke them manually or wait for the next scheduled run.
After we upgraded the environment class, we tested the same DAG and observed the metrics were showing improved values because more resources are now available. With this XL environment, you can run more tasks on fewer worker nodes, and therefore the number of queued tasks kept decreasing. Alternately, if you have tasks that require more memory and/or CPU, you can reduce the tasks per worker, but still achieve a high number of tasks per worker with a larger environment size. For example, if you have a large environment where the worker node CPU is maxed out with celery.worker_autoscale
(the Airflow configuration that defines the number of tasks per worker) Set at 20,20, you can increase to an XL environment and set celery.worker_autoscale
to 20,20 on the XL, rather than the default 40 tasks per worker on an XL environment and the CPU load should reduce significantly.
Set up a new XL environment in Amazon MWAA
You can get started with Amazon MWAA in your account and preferred AWS Region using the AWS Management Console, API, or AWS Command Line Interface (AWS CLI). If you’re adopting infrastructure as code (IaC), you can automate the setup using AWS CloudFormation, the AWS Cloud Development Kit (AWS CDK), or Terraform scripts.
Amazon MWAA XL and 2XL environment classes are available today in all Regions where Amazon MWAA is currently available.
Conclusion
Today, we are announcing the availability of two new environment classes in Amazon MWAA. With XL and 2XL environment classes, you can orchestrate larger volumes of complex or resource-intensive workflows. If you are running DAGs with a high number of dependencies, running thousands of DAGs across multiple environments, or in a scenario that requires you to heavily use workers for compute, you can now overcome the related capacity issues by increasing your environment resources in a few straightforward steps.
In this post, we discussed the capabilities of the two new environment classes, including pricing and some common resource constraint problems they solve. We provided guidance and an example of how to observe your existing environments to plan scaling to XL or 2XL, and we described how you can upgrade existing environments to use the increased resources.
For additional details and code examples on Amazon MWAA, visit the Amazon MWAA User Guide and the Amazon MWAA examples GitHub repo.
Apache, Apache Airflow, and Airflow are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries.
About the Authors
Hernan Garcia is a Senior Solutions Architect at AWS based in the Netherlands. He works in the financial services industry, supporting enterprises in their cloud adoption. He is passionate about serverless technologies, security, and compliance. He enjoys spending time with family and friends, and trying out new dishes from different cuisines.
Jeetendra Vaidya is a Senior Solutions Architect at AWS, bringing his expertise to the realms of AI/ML, serverless, and data analytics domains. He is passionate about assisting customers in architecting secure, scalable, reliable, and cost-effective solutions.
Sriharsh Adari is a Senior Solutions Architect at AWS, where he helps customers work backward from business outcomes to develop innovative solutions on AWS. Over the years, he has helped multiple customers on data platform transformations across industry verticals. His core area of expertise includes technology strategy, data analytics, and data science. In his spare time, he enjoys playing sports, watching TV shows, and playing Tabla.