Artificial Intelligence
Category: Amazon SageMaker
Machine learning best practices in financial services
We recently published a new whitepaper, Machine Learning Best Practices in Financial Services, that outlines security and model governance considerations for financial institutions building machine learning (ML) workflows. The whitepaper discusses common security and compliance considerations and aims to accompany a hands-on demo and workshop that walks you through an end-to-end example. Although the whitepaper […]
Safely deploying and monitoring Amazon SageMaker endpoints with AWS CodePipeline and AWS CodeDeploy
As machine learning (ML) applications become more popular, customers are looking to streamline the process for developing, deploying, and continuously improving models. To reliably increase the frequency and quality of this cycle, customers are turning to ML operations (MLOps), which is the discipline of bringing continuous delivery principles and practices to the data science team. […]
Deploying your own data processing code in an Amazon SageMaker Autopilot inference pipeline
The machine learning (ML) model-building process requires data scientists to manually prepare data features, select an appropriate algorithm, and optimize its model parameters. It involves a lot of effort and expertise. Amazon SageMaker Autopilot removes the heavy lifting required by this ML process. It inspects your dataset, generates several ML pipelines, and compares their performance […]
Multi-GPU and distributed training using Horovod in Amazon SageMaker Pipe mode
There are many techniques to train deep learning models with a small amount of data. Examples include transfer learning, few-shot learning, or even one-shot learning for an image classification task and fine-tuning for language models based on a pre-trained BERT or GPT2 model. However, you may still have a use case in which you need […]
Building machine learning workflows with Amazon SageMaker Processing jobs and AWS Step Functions
Machine learning (ML) workflows orchestrate and automate sequences of ML tasks, including data collection, training, testing, evaluating an ML model, and deploying the models for inference. AWS Step Functions automates and orchestrates Amazon SageMaker-related tasks in an end-to-end workflow. The AWS Step Functions Data Science Software Development Kit (SDK) is an open-source library that allows […]
Code-free machine learning: AutoML with AutoGluon, Amazon SageMaker, and AWS Lambda
One of AWS’s goals is to put machine learning (ML) in the hands of every developer. With the open-source AutoML library AutoGluon, deployed using Amazon SageMaker and AWS Lambda, we can take this a step further, putting ML in the hands of anyone who wants to make predictions based on data—no prior programming or data […]
How SNCF Réseau and Olexya migrated a Caffe2 vision pipeline to Managed Spot Training in Amazon SageMaker
This blog post is co-written by guest authors from SNCF and Olexya. Transportation and logistics are fertile ground for machine learning (ML). In this post, we show how the French state-owned railway company Société Nationale des Chemins de fer Français (SNCF) uses ML from AWS with the help of its technology partner Olexya to research, […]
Setting up human review of your NLP-based entity recognition models with Amazon SageMaker Ground Truth, Amazon Comprehend, and Amazon A2I
Update Aug 12, 2020 – New features: Amazon Comprehend adds five new languages(Spanish, French, German, Italian and Portuguese) read here. Amazon Comprehend increased the limit of number of entities per custom entity model from 12 to 25 read here. Organizations across industries have a lot of unstructured data that you can evaluate to get entity-based […]
Deploying custom models built with Gluon and Apache MXNet on Amazon SageMaker
When you build models with the Apache MXNet deep learning framework, you can take advantage of the expansive model zoo provided by GluonCV to quickly train state-of-the-art computer vision algorithms for image and video processing. A typical development environment for training consists of a Jupyter notebook hosted on a compute instance configured by the operating […]
Infoblox Inc. built a patent-pending homograph attack detection model for DNS with Amazon SageMaker
This post is co-written by Femi Olumofin, an analytics architect at Infoblox. In the same way that you can conveniently recognize someone by name instead of government-issued ID or telephone number, the Domain Name System (DNS) provides a convenient means for naming and reaching internet services or resources behind IP addresses. The pervasiveness of DNS, […]







