Artificial Intelligence
Category: Amazon SageMaker
Amazon SageMaker rated as top AI Service Cloud in analyst firm KuppingerCole’s evaluation of AI Service Clouds
As more European organizations move from experimentation to production for AI projects, the importance of running these projects on a scalable, secure, and cost-efficient platform becomes clear. Building AI solutions from scratch is often beyond the capabilities of many organizations, especially because it requires in-house AI expertise, which is in short supply. According to analyst […]
Gamify Amazon SageMaker Ground Truth labeling workflows via a bar chart race
Labeling is an indispensable stage of data preprocessing in supervised learning. Amazon SageMaker Ground Truth is a fully managed data labeling service that makes it easy to build highly accurate training datasets for machine learning. Ground Truth helps improve the quality of labels through annotation consolidation and audit workflows. Ground Truth is easy to use, […]
How NSF’s iHARP researchers are enabling active learning for polar ice analysis using Amazon SageMaker and Amazon A2I
The University of Maryland, Baltimore County’s Bina lab is a multidisciplinary research lab for employing advanced computer vision, machine learning (ML), and remote sensing techniques to discover new knowledge of our environment, especially in the Arctic and Antarctic regions. The lab’s work is supported by NSF BIGDATA awards (IIS-1947584, IIS-1838230), the NSF HDR Institute award […]
How Imperva expedites ML development and collaboration via Amazon SageMaker notebooks
This is a guest post by Imperva, a solutions provider for cybersecurity. Imperva is a cybersecurity leader, headquartered in California, USA, whose mission is to protect data and all paths to it. In the last few years, we’ve been working on integrating machine learning (ML) into our products. This includes detecting malicious activities in databases, […]
Organize product data to your taxonomy with Amazon SageMaker
When companies deal with data that comes from various sources or the collection of this data has changed over time, the data often becomes difficult to organize. Perhaps you have product category names that are similar but don’t match, and on your website you want to surface these products as a group. Therefore, you need […]
Train and deploy deep learning models using JAX with Amazon SageMaker
Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning (ML) models at any scale. Typically, you can use the pre-built and optimized training and inference containers that have been optimized for AWS hardware. Although those containers cover many deep learning workloads, you may have […]
Build, tune, and deploy an end-to-end churn prediction model using Amazon SageMaker Pipelines
The ability to predict that a particular customer is at a high risk of churning, while there is still time to do something about it, represents a huge potential revenue source for every online business. Depending on the industry and business objective, the problem statement can be multi-layered. The following are some business objectives based […]
Build your own brand detection and visibility using Amazon SageMaker Ground Truth and Amazon Rekognition Custom Labels – Part 2: Training and analysis workflows
In Part 1 of this series, we showed how to build a brand detection solution using Amazon SageMaker Ground Truth and Amazon Rekognition Custom Labels. The solution was built on a serverless architecture with a custom user interface to identify a company brand or logo from video content and get an in-depth view of screen […]
Bring structure to diverse documents with Amazon Textract and transformer-based models on Amazon SageMaker
From application forms, to identity documents, recent utility bills, and bank statements, many business processes today still rely on exchanging and analyzing human-readable documents—particularly in industries like financial services and law. In this post, we show how you can use Amazon SageMaker, an end-to-end platform for machine learning (ML), to automate especially challenging document analysis […]
Run computer vision inference on large videos with Amazon SageMaker asynchronous endpoints
This blog post was last reviewed and updated August, 2022 with a generator-based approach for video payloads of longer duration. AWS customers are increasingly using computer vision (CV) models on large input payloads that can take a few minutes of processing time. For example, space technology companies work with a stream of high-resolution satellite imagery […]