Amazon Web Services 한국 블로그
Category: Amazon SageMaker Studio
Amazon SageMaker Studio, Amazon Q Developer를 통한 ML 워크플로 간소화
오늘 기계 학습(ML) 개발 수명 주기를 간소화하고 가속화하는 Amazon SageMaker Studio의 새로운 기능을 발표합니다. SageMaker Studio의 Amazon Q Developer는 SageMaker JupyterLab 환경에 기본적으로 내장된 생성형 AI 기반 어시스턴트입니다. 이 어시스턴트는 자연어 입력을 사용하며 각 태스크에 가장 적합한 도구를 추천하고, 단계별 지침을 제공하고, 시작하기 위한 코드를 생성하고, 오류 발생 시 문제 해결을 지원함으로써 ML 개발 수명 […]
Amazon SageMaker Studio – 웹 기반 인터페이스, 코드 편집기, 유연한 작업 공간 추가
이제 개선된 Amazon SageMaker Studio 환경을 발표합니다! 새 SageMaker Studio 웹 기반 인터페이스는 더 빠르게 로드되며, IDE 선택에 관계없이 기본 통합 개발 환경(IDE)과 SageMaker 리소스 및 도구에 대한 일관된 액세스를 제공합니다. JupyterLab 및 RStudio 외에도 SageMaker Studio에는 이제 Code-OSS(Visual Studio Code 오픈 소스) 기반의 완전 관리형 코드 편집기가 포함되어 있습니다. 코드 편집기와 JupyterLab은 모두 유연한 […]
Amazon SageMaker – 안내식 워크플로를 통한 모델 패키징 및 배포 가속화
이제 Amazon SageMaker에서 개선된 모델 배포 경험을 통해 기존 기계 학습(ML) 모델과 파운데이션 모델(FM)을 더 빠르게 배포할 수 있습니다. 데이터 사이언티스트 또는 ML 실무자는 이제 SageMaker Python SDK의 새로운 ModelBuilder 클래스를 사용하여 모델을 패키징하고 로컬 추론을 수행하여 런타임 오류를 검증하며 로컬 IDE 또는 SageMaker Studio 노트북에서 SageMaker를 배포할 수 있습니다. SageMaker Studio의 새로운 대화형 모델 […]