Amazon Web Services 한국 블로그

Category: Amazon SageMaker

AWS 주간 소식 모음 – 2022년 8월 셋째주

저는 AWS Twitch 채널에서 AWS On Air, Containers from the Couch, Serverless Office Hours와 같은 흥미로운 온라인 라이브 쇼를 즐겁게 시청하고 있습니다. 지난 주, AWS Storage Day 2022 는 AWS Twitch 채널에서 열렸는데요. 스토리지 비용을 절감 및 최적화하고 조직에 데이터 복원력을 구축해야 하는 고객의 요구 사항을 해결하는 최근 발표 및 통찰력을 다루었습니다. 예를 들어, AWS에서 하이브리드 […]

Read More

Grillo가 AWS에 저비용 지진 조기 경보 시스템을 구축한 방법

지역에 대규모 지진이 일어날 때 발생하는 부상의 50%는 낙상 또는 위험물 낙하 때문으로 추정됩니다. 즉, 주민들에게 몇 초 동안 안전한 곳으로 대피하라고 경고했다면 이러한 부상의 대부분을 예방할 수 있었다는 뜻이죠. 지진학에 중점을 둔 사회적 영향 기업인 Grillo는 AWS를 통해 지진을 감지하고 해당 지역의 위험에 대해 실시간으로 주민에게 알리는 저비용 솔루션을 만들었습니다. 지진은 언제든 발생할 수 있으며 […]

Read More

Amazon Prime Day 2022 성공을 위한 AWS 서비스 활용

AWS가 Amazon Prime Day 2022  행사를 성공하게 하는 방법에 대해 알리는 연례 전통의 일환으로, 몇 가지 차트 토핑 지표를 공유 할 수 있어서 보람찹니다(2016, 2017, 2019, 2020 및 2021 게시물을 다시 살펴보실 수 있습니다). 올해에 저는 응급 처치 키트, 3D 프린터 용 나무 같은 갈색 필라멘트, 넌스틱 프라이팬을 샀습니다! 당사 공식 보도 자료에 따르면, 전 […]

Read More

Amazon SageMaker Ground Truth 신규 기능- 합성 데이터 생성 지원

Amazon SageMaker Ground Truth를 사용해 레이블이 지정된 합성 이미지 데이터를 생성할 수 있습니다. 기계 학습(ML) 모델 구축은 높은 수준에서 데이터 수집 및 준비로 시작하여 모델 훈련 및 모델 배포로 이어지는 반복 프로세스입니다. 특히 모델 학습을 위해 크고 다양하며 정확하게 레이블이 지정된 데이터 세트를 수집하는 첫 번째 단계는 종종 까다롭고 시간이 많이 걸립니다. 컴퓨터 비전(CV) 애플리케이션을 […]

Read More

Amazon SageMaker Serverless Inference – 서버리스 기계 학습 추론 기능

2021년 12월, AWS는 기본 인프라를 구성하거나 관리할 필요 없이 추론을 위한 기계 학습(ML) 모델을 배포할 수 있도록 Amazon SageMaker의 새로운 옵션으로 Amazon SageMaker Serverless Inference(평가판)를 도입했습니다. 오늘 Amazon SageMaker Serverless Inference가 정식 출시 되었음을 발표하게 되어 기쁘게 생각합니다. ML 추론 사용 사례에 따라 모델 호스팅 인프라에 대한 요구 사항이 달라집니다. 광고 게재, 사기 탐지 또는 […]

Read More

Amazon SageMaker Clarify를 사용하여 Bundesliga Match Facts xGoals 설명

가장 흥미로운 AWS re:Invent 2020 공지사항 중 하나는 기계 학습(ML) 모델의 바이어스를 감지하고 모델 예측을 설명하도록 돕기 위해 고안된 새로운 Amazon SageMaker 기능인 Amazon SageMaker Clarify입니다. 기계 학습 알고리즘을 통해 대규모 예측이 이루어지는 현대 환경에서 대규모 기술 조직이 기계 학습 모델의 예측을 기반으로 특정 결정을 내린 이유를 고객에게 설명하는 것이 점점 더 중요해지고 있습니다. 결정적으로 이는 입력과 출력은 알지만 내부에서 […]

Read More

Thomson Reuters, Amazon SageMaker기반 자연어 처리 솔루션 개발 사례

이 게시물은 Thomson Reuters의 John Duprey와 Filippo Pompili가 공동 작성하였습니다. 본 게시물의 내용은 AWS의 공식적인 입장과 다를 수 있습니다. Thomson Reuters(TR)는 세계에서 가장 신뢰할 수 있는 답변 제공 업체 중 하나로, 전문가들이 자신 있게 의사 결정을 내리고 더 나은 비즈니스를 운영할 수 있도록 지원합니다. TR의 전문가 팀은 정보, 혁신, 신뢰할 수 있는 인사이트를 결합하여 복잡한 […]

Read More

Amazon Comprehend 기반 설공 상품평 분석을 통한 트렌드 예측 개선하기

이랜드 이노플은 이랜드 그룹 전체의 IT를 담당하는 회사이며, 2014년 빅데이터 사업부 설립 이래 빅데이터 분석 및 AI 서비스를 그룹사를 대상으로 제공해 오고 있습니다. 대외적으로는 2020년부터 스타트업 및 중소기업을 대상으로 빅데이터 트렌드 컨설팅을 통해 성공의 경험을 함께 나누고 있습니다. 그중에서도 저당류 푸드 스타트업인 ‘설탕없는 과자공장'(이하 ‘설공’)에 대한 컨설팅 사례를 공유하고자 합니다. 설공은 푸드 상품기획에 있어서 몇 […]

Read More

Amazon SageMaker기반 무신사 상품 후기 이미지 자동 검수 서비스 개발 사례

무신사는 840만 회원을 보유하고 6,000개 패션 브랜드가 입점한 한국 최대 규모의 온라인 패션 플랫폼입니다. 매월 400만 명의 고객이 무신사에 방문하고 있으며, 고객 연령층은 트렌드에 민감한 10~30대 비율이 90% 이상입니다. 무신사는 한국의 패션 트렌드를 선도하는 플랫폼으로서, 어떤 곳과도 비교할 수 없는 압도적인 양의 데이터를 보유하고 있습니다. 무신사 데이터솔루션팀은 무신사 스토어에 쌓이는 데이터와 관련된 모든 업무를 진행하고 […]

Read More

새로운 기능 – Amazon SageMaker Studio로 EMR 클러스터 및 Spark 작업 생성 및 관리

이제 Amazon SageMaker Studio 서비스에 세 가지 새로운 개선 사항을 제공하게 되어 매우 기쁩니다. 현재 SageMaker Studio의 사용자는 단일 AWS 계정 내에서 그리고 조직 전체의 공유 계정에서 실행되는 Amazon EMR 클러스터를 생성, 종료, 관리, 검색 및 연결할 수 있습니다. 이 모든 작업을 SageMaker Studio에서 직접 수행할 수 있습니다. 또한 SageMaker Studio Notebook 사용자는 SparkUI를 활용하여 […]

Read More