Amazon Web Services 한국 블로그

Category: SageMaker

Amazon SageMaker와 Deep Graph Library를 이용한 이종 네트워크에서 사기 탐지하기

이상 행위자나 의심스러운 계정으로 인해서 매년 수 십조 원의 손실이 발생하고 있습니다. 시스템에서 악의적인 행동들이 일어나는 것을 방지하기 위해서 많은 기업들은 규칙 기반 필터를 적용하고 있지만, 이 필터들은 다루기 힘들기도 하고 악의적인 행동 전체를 잡아내지 못합니다. 하지만 그래프 기술과 같은 솔루션들은 이상 행위자나 악의적인 사용자를 탐지하는데 아주 적합합니다. 이상 행위자는 규칙 기반의 시스템이나 단순한 특징 […]

Read More

Amazon SageMaker와 Apache Airflow을 통한  기계학습 워크플로 구축하기

기계 학습(Machine Learning, ML) 워크플로는 데이터 수집 및 변환을 가능하게 함으로써 ML 작업 순서를 오케스트레이션하고 자동화합니다. 그런 다음 ML 모델을 학습, 테스트 및 평가하여 결과를 얻습니다. 예를 들어 Amazon SageMaker에서 모델을 학습하고 모델을 프로덕션 환경에 배포하여 추론하기 전에 Amazon Athena에서 쿼리를 수행하거나 AWS Glue에서 데이터를 통합하고 준비 할 수 있습니다. 이러한 작업을 자동화하고 다양한 서비스에서 […]

Read More

Amazon SageMaker Ground Truth 기반 3D 포인트 클라우드 레이블 지정 기능 출시 (서울 리전 포함)

AWS re:Invent 2018에서 공개된 Amazon Sagemaker Ground Truth는 기계 학습 데이터 세트에 간편하게 주석을 기록해주는 Amazon SageMaker의 기능입니다. AWS 고객은 내장 워크플로로 효율적이고 정확하게 이미지 및 텍스트 데이터에 레이블을 지정하거나 사용자 지정 워크플로로 모든 유형의 데이터에 레이블을 지정할 수 있습니다. 데이터 샘플이 인력(개인, 타사 또는 MTurk)에게 자동으로 배포되고 주석이 Amazon Simple Storage Service(S3)에 저장됩니다. 또는 […]

Read More

Amazon.Science – AWS의 SK텔레콤의 ‘한국어 자연어 처리기’ 개발 지원기

이 글은 Amazon Science의  Amazon scientists help SK telecom create Korean-based natural language processor (글쓴이 – Douglas Gantenbein)를 한국어로 번역했습니다. 한국어는 전세계에서 8천만 명이 사용하는 주요한 언어입니다. 오래전 만주 지역에서 기원한 것으로 여기지는 긴 역사에도 불구하고, 한국어는 (영어가 프랑스어나 라틴어와 가지는 것과 같은) 다른 언어와의 뚜렷한 연관성이 없는 “고립어”라고 불립니다. 그러나, 한국어는 컴퓨터가 인간의 언어를 […]

Read More

Amazon SageMaker의 MXNet 추론 컨테이너를 활용한 KoGPT2 모델 배포하기

기계 학습 기반 자연어 처리를 위한 다양한 학습 모델이 나오고 있는 가운데, 다국어로 학습된 BERT의 한국어 성능 한계를 극복하기 위해 SK텔레콤의 T-Brain에서는 KoBERT라는 한국형 사전 훈련 모델을 개발하였습니다. 위키피디아나 뉴스 등에서 수집한 수백만 개의 한국어 문장으로 이루어진 대규모 말뭉치(corpus)를 기반으로 학습하였으며, 한국어의 불규칙한 언어 변화의 특성을 반영하기 위해 데이터 기반 토큰화(Tokenization) 기법을 적용하여 Apache MXNet을 […]

Read More

Amazon API Gateway 매핑 템플릿과 Amazon SageMaker를 통한 기계 학습 기반 REST API 생성하기

AWS 고객들은 완전 관리형 기계 학습 서비스인 Amazon SageMaker를 사용하여 기계 학습 모델을 구축, 교육 및 배포 할 수 있습니다. 이를 통해 개인화 된 제품 추천을 하거나, 사용자에 따른 선호 사항을 자동으로 제공하는 애플리케이션을 통해 고객의 경험을 높일 수 있습니다. 그런데, 이런 애플리케이션을 구축 할 때 아키텍처의 주요 고려 사항 중 하나는 사용자 단말기나 웹브라우저에서 실행되는 […]

Read More

클라우드 기술의 5가지 주요 흐름 – 2019년 회고

이제 2019년도 하루 밖에 남지 않았네요! 매년 해왔던 블로그 회고 (2015년, 2016년, 2017년, 2018년)의 일환으로 이번에는 한해 동안 클라우드 기술의 흐름이 어떻게 변화했는지 살펴보고자 합니다. 제가 지난 5년간 AWS에서 일하면서, 올해 개인적으로 중요하다고 생각된 것들을 뽑아 보았는데, 혹시 내년에 여러분의 기술 자산을 채우기 위한 목표를 세운다면 어느 분야에 집중하면 좋을지 실마리가 되길 바랍니다. 1. 클라우드 […]

Read More

Amazon SageMaker, 그래프 딥러닝 학습을 위한 Deep Graph Library 모델 추가

AWS에서는 이미 검증된 다양한 기계 학습 모델을 최적화해서 Amazon SageMaker에서 사용할 수 있도록 다수의 유명 기-훈련 알고리즘과 모델을 제공하고 있습니다. 또한, AWS Marketplace의 기계 학습 분야에는 수백개의 모델들을 원-클릭으로 SageMaker에서 사용 가능합니다. 이번에 그래프 신경망의 손쉬운 구현을 위해 빌드된 오픈 소스 라이브러리 Deep Graph Library를 Amazon SageMaker에서 사용할 수 있습니다. 최근 몇 년 동안 딥 […]

Read More

Amazon SageMaker Debugger – 기계 학습 모델 학습 과정 디버깅 기능 출시 (서울 리전 포함)

Amazon SageMaker Debugger는 기계 학습(ML) 훈련 작업 중 발생하는 복잡한 문제를 자동으로 식별해주는 기능입니다. ML 모델을 구축하고 학습하려면 과학과 기술(요술이라고 말하는 사람도 있음)이 모두 필요합니다. 데이터 세트를 수집하고 준비하는 것부터 다양한 알고리즘을 실험하여 최적의 학습 파라미터(공포의 하이퍼파라미터)를 찾는 것까지, ML 실무자가 고성능 모델을 제공하기까지 넘어야 할 허들은 꽤 많습니다. 그래서 AWS는 모듈식의 완전관리형 서비스인 Amazon […]

Read More

Amazon SageMaker Autopilot – 완벽한 제어 및 가시성을 바탕으로 고품질 기계 학습 모델 자동 생성 기능 (서울 리전 포함)

Amazon SageMaker Autopilot은 높은 품질의 분류 및 회귀 기계 학습 모델을 자동으로 생성하면서도, 완벽한 제어 및 가시성을 제공하는 AutoML 서비스입니다. 1959년에 Arthur Samuel은 기계 학습을 명시적 프로그래밍 없이 학습할 수 있는 컴퓨터의 기능이라고 정의했습니다. 그러나, 현실적으로 기존 데이터 세트에서 패턴을 추출하고 이러한 패턴을 사용하여 새 데이터에 일반화되는 예측 모델을 구축할 수 있는 알고리즘을 찾는 것을 […]

Read More