Amazon Web Services 한국 블로그

Category: SageMaker

Amazon Aurora, DB 질의를 통한 기계 학습 결과 통합 기능 출시

인공 지능 및 기계 학습을 통해 우리는 데이터에서 더 나은 통찰력을 얻을 수 있습니다. 하지만, 구조화된 데이터의 대부분이 저장되는 위치는 어디일까요? 바로 데이터베이스입니다. 오늘날 관계형 데이터베이스의 데이터에 기계 학습을 사용하려면 데이터베이스에서 데이터를 읽은 후 기계 학습 모델을 적용하는 사용자 지정 애플리케이션을 개발해야 합니다. 이러한 애플리케이션을 개발하기 위해서는 데이터베이스와의 상호 작용 및 기계 학습 사용을 위해 […]

Read More

Amazon SageMaker – 관리형 스팟 모델 학습 기능으로 비용 절감하기

Amazon SageMaker는 완전 관리형 기계 학습(ML) 서비스로서, 개발자와 데이터 과학자는 이를 통해 모든 규모의 모델을 쉽게 빌드하고 학습하며 배포할 수 있습니다. 내장 알고리즘 혹은 자체 알고리즘을 사용하거나, AWS Marketplace에서 사용 가능한 알고리즘 중에서 선택할 수 있어 ML 모델을 실험 단계부터 스케일아웃 프로덕션에 이르기까지 훨씬 쉽고 빠르게 진행할 수 있습니다. 주요 이점 중 하나는 작업 규모에 […]

Read More

Amazon SageMaker Factorization Machines 알고리즘을 확장하여 추천 시스템 구현하기

Amazon SageMaker는 기계 학습 워크로드와 관련한 복잡한 비즈니스 문제를 해결하는 데 필요한 유연성을 제공합니다. 내장된 알고리즘은 빠르게 시작하는 데 도움이 됩니다.  이 블로그 게시물에서는 내장된 Factorization Machines 알고리즘을 확장하여 상위 x개의 권장 사항을 예측하는 방법을 설명합니다.이 접근 방식은 정해진 수의 사용자 권장 사항을 배치 형식으로 생성하려고 할 때 이상적입니다. 예를 들어, 이 접근 방식을 사용하여 […]

Read More

Amazon SageMaker Ground Truth의 최근 신규 기능 모음

AWS re:Invent 2018에서 출시된 Amazon SageMaker Ground Truth는 Amazon SageMaker의 기능으로, 이 기능을 통해 고객은 기계 학습 시스템을 학습시키는 데 필요한 데이터 세트에 효율적이고 정확하게 레이블을 지정할 수 있습니다. Ground Truth에 대한 간단한 소개 Amazon SageMaker Ground Truth를 사용하면 기계 학습을 위해 매우 정확한 학습 데이터 세트를 빠르게 구축할 수 있습니다. SageMaker Ground Truth를 사용하면 […]

Read More

Edge기반 기계 학습: AWS IoT Greengrass를 활용한 이미지 분류 모델 훈련 (Part 2)

이 블로그 게시물의 1부에서는 재활용 시설의 분류기가 네 가지 음료 용기를 식별할 수 있도록 해 주는 이미지 분류 모델을 생성했고, 이 모델을 AWS IoT Greengrass Image Classification Connector를 사용하여 AWS IoT Greengrass 코어 디바이스에 배포하는 것을 구현했습니다. 지난 re:Invent 2018에서 발표된 AWS IoT Greengrass 커넥터를 사용하면 코드를 작성하지 않고 IoT Greengrass 코어 디바이스를 타사 애플리케이션, […]

Read More

Edge기반 기계 학습: AWS IoT Greengrass를 활용한 이미지 분류 모델 훈련 (Part 1)

지난 re:Invent 2018에서 소개된 AWS IoT Greengrass Image Classification connector를 통해 엣지에서 AWS IoT Greengrass를 활용한 이미지 분류가 훨씬 쉬워졌습니다. AWS IoT Greengrass는 로컬 디바이스에 상주하는 소프트웨어이므로 소스(예: 센서 등)에 가까운 위치에서 데이터를 분석할 수 있으며, AWS IoT Greengrass connector를 사용하면 코드를 작성하지 않고 AWS IoT Greengrass 코어 디바이스를 타사 애플리케이션, 온프레미스 소프트웨어 및 AWS […]

Read More

AWS Step Functions을 이용한 Amazon SageMaker 모델 자동 배포 방법

Amazon SageMaker는 모델의 개발, 훈련 및 배포, 솔루션 구축 비용 절감 및 데이터 과학 팀의 생산성 개선을 위한 완전한 ML(기계 학습) 워크플로 서비스입니다. SageMaker에는 다수의 미리 정의된 알고리즘이 포함되어 있습니다. 모델 교육을 위한 훈련 이미지인 Docker 이미지와 REST 엔드포인트에 배포할 추론 모델을 제공하여 자체 알고리즘을 생성할 수도 있습니다. 기계 학습 서비스를 정식으로 구축할 때는 기계 […]

Read More

Amazon Kinesis 비디오 스트림 및 Amazon SageMaker를 사용한 실시간 대규모 영상 분석

오늘은 Amazon Kinesis Video Streams Inference Template(KIT) for Amazon SageMaker의 기능에 대해 소개합니다. 이 기능은 고객이 Kinesis 비디오 스트림을 Amazon SageMaker 엔드포인트에 몇 분 만에 연결할 수 있습니다. 따라서 서비스를 통합하기 위해 다른 라이브러리를 사용하거나 맞춤형 소프트웨어를 작성하지 않고도 실시간 추론이 가능합니다. KIT는 Docker 컨테이너로 패키징된 Kinesis Video Client Library 소프트웨어와 필요한 모든 AWS 리소스의 […]

Read More

Amazon SageMaker IP Insights 알고리즘을 사용하여 의심스러운 IP 주소 탐지하기

오늘은 Amazon SageMaker를 위한 새로운 IP Insights 알고리즘에 대해 살펴보겠습니다. IP Insights는 IP 주소를 기반으로 비정상적인 동작과 사용 패턴을 탐지하는 비지도 학습 알고리즘입니다. 이 블로그 게시물에서는 IP 주소를 이용한 사기성 동작을 식별하는 데 있어서의 문제점을 소개하고 Amazon SageMaker IP Insights 알고리즘을 설명합니다. 또한, 실제 애플리케이션에 활용하는 방법을 제시하고 해당 알고리즘을 사용하여 얻어진 몇 가지 결과를 공유합니다. […]

Read More

Amazon SageMaker 모델 학습시 관련 지표에 대한 손쉬운 모니터링과 시각화

데이터 과학자와 개발자는 이제 Amazon SageMaker에서 기계 학습 모델을 학습하는 동안 계산된 지표를 쉽고 빠르게 액세스하고 모니터링하고 시각화할 수 있습니다. 여러분들은 Amazon SageMaker용 AWS 관리 콘솔 또는 Python SDK API를 사용하여 추적할 지표를 지정할 수 있습니다. 모델 학습이 시작되면 Amazon SageMaker는 손실 곡선 및 정확도 곡선과 같은 시계열 곡선을 시각화하기 위해 지정된 지표를 자동으로 실시간 […]

Read More