Amazon Web Services 한국 블로그

Category: SageMaker

Amazon Elastic Inference 출시 – GPU 기반 딥러닝 추론 가속 서비스 (서울 리전 포함)

최근 인공 지능과 딥러닝이 발전한 이유 중 하나로 GPU(그래픽 처리 장치)의 환상적인 컴퓨팅 성능을 꼽을 수 있습니다. 약 10년 전 연구자들은 기계 학습과 고성능 컴퓨팅에 대규모 하드웨어 병렬 처리를 활용하는 방법을 찾아냈습니다. 관심 있는 분들은 2009년 스탠포드 대학이 발표한 논문(PDF)을 살펴보시기 바랍니다. 현재 GPU는 개발자와 데이터 과학자들이 의료 영상 분석이나 자율 주행을 구현하기 위해 복잡한 […]

Read More

Amazon SageMaker RL – 강화 학습 서비스 출시 (서울 리전 포함)

지난 몇 년간 기계 학습(Machine Learning)은 많은 관심을 받아왔으며, 의료 영상 분석부터 무인 주행 트럭까지 ML 모델을 통해 할 수 있는 복잡한 작업의 목록은 꾸준히 증가하고 있습니다. 이러한 최근 기계학습 기술은 어떤 방법이 있을까요? 간단히 말해 다음과 같은 3가지 방법으로 모델을 훈련할 수 있습니다. 지도 학습(Supervised Learning): 레이블이 지정된 데이터 세트(샘플 및 답변이 포함된 데이터 […]

Read More

Amazon SageMaker Ground Truth 서비스 – 데이터 레이블 작업 고도화 및 70% 비용 절감 가능

1959년, Arthur Samuel은 기계 학습을 “명시적으로 프로그래밍하지 않으면서도 컴퓨터에 학습할 수 있는 능력을 부여하는 연구 분야”로 정의했습니다. 하지만, 만능 솔루션은 없습니다. 이러한 학습 프로세스에는 알고리즘(“학습 방법”)과 학습 데이터 세트(“학습 방법”)가 필요합니다. 오늘날 대부분의 기계 학습 작업에는 지도 학습(supervised learning)이라는 기법이 사용됩니다. 레이블이 지정된 데이터 세트에서 패턴 또는 동작을 학습하는 알고리즘이죠. 레이블이 지정된 데이터 세트에는 데이터 […]

Read More

Amazon SageMaker 자동 모델 튜닝을 활용한 ResNet 모델 훈련하기

Amazon SageMaker에서 우리가 사용하는 기계 학습 모델의 하이퍼파라미터(Hyper-Parameter) 값을 자동으로 튜닝하여 보다 정확한 예측을 생성하는 기능이 최근에 출시되었습니다. 하이퍼파라미터는 모델 훈련 중에 알고리즘의 동작을 설명하는 사용자 정의 설정입니다. 예를 들어, 의사 결정 트리의 규모, 세그먼트에서 원하는 클러스터의 수 또는 데이터를 반복할 때 인공신경망 가중치의 증분 업데이트 단위 등이 포함됩니다. 하이퍼파라미터 값은 최종 정확도 및 성능에 […]

Read More

Amazon SageMaker를 위한 서버리스 엔드포인트 만들기

Amazon SageMaker는 AWS에서 기계 학습 모델을 구축 및 교육하고 프로덕션 환경에 배포할 수 있는 강력한 플랫폼을 제공합니다. 이 강력한 플랫폼과 Amazon Simple Storage Service(S3), Amazon API Gateway 및 AWS Lambda의 서버리스 기능을 결합하면, Amazon SageMaker 엔드포인트를 잠재적으로 다양한 소스로부터 새로운 입력 데이터를 수락하고 최종 사용자에게 결과로 나온 추론을 제시하는 웹 애플리케이션으로 변환할 수 있습니다. 이 […]

Read More

Amazon SageMaker, 배치 변환 기능 및 TensorFlow 컨테이너를 위한 파이프 입력 모드 추가

지난 주 AWS Summit NY에서 두 가지 새로운 Amazon SageMaker 기능을 출시했습니다. 그 중 하나는 고객이 페타바이트 규모의 데이터에 대한 비-실시간 시나리오에서 예측을 수행할 수 있게 해 주는 배치 변환이라는 새로운 배치 추론 기능이며 다른 하나는 TensorFlow 컨테이너를 위한 파이프 입력 모드 지원입니다. SageMaker는 한국 블로그와 Machine Learning 블로그에서 상세하게 다루고 있지만, 출시 중인 기술 […]

Read More

Amazon SageMaker, 서울 리전 출시

Amazon SageMaker는 개발자 및 데이터 과학자가 다양한 규모의 기계 학습 모델을 쉽고 빠르게 구축, 교육 및 배포할 수 있도록 지원하는 완전관리형 플랫폼입니다. 오늘 서울 리전에 출시합니다. Amazon SageMaker는 교육 데이터에 빠르게 연결하고 애플리케이션을 위한 최상의 알고리즘과 프레임워크를 선택 및 최적화하는 데 필요한 모든 것을 제공함으로써 손쉽게 ML 모델을 구축하고 교육할 수 있는 상태로 만들어 줍니다.또한, […]

Read More

Amazon SageMaker 기반 컨테이너를 활용한 Scikit-Learn 모델 훈련 및 호스팅 방법

지난 re:Invent 2017에서 처음 소개된 Amazon SageMaker는 원하는 규모의 머신 러닝 모델의 빌드, 훈련, 배포를 할 수 있는 서버리스(serverless) 데이터 사이언스용 환경을 제공하고 있습니다. 이를 통해 scikit-learn 처럼 폭넓게 사용되고 있는 프레임워크를 이용한 작업도 가능해졌습니다. 이 블로그에서는 2가지를 주제로 소개하려고 합니다: 첫번째는, 모델을 훈련(Training)시키고 호스팅하기 위해 Amazon SageMaker에서 컨테이너를 어떻게 사용하는지에 대해 알아봅니다. 그리고 두 […]

Read More

Amazon SageMaker 자동 모델 튜닝 기능 출시 – 기계 학습을 위한 인공 지능

오늘 Amazon SageMaker 자동 모델 튜닝 기능을 출시합니다. 자동 모델 튜닝은 모델의 정확성을 높이기 위한 하이퍼파라미터(Hyperparameter)을 조정하는 힘든 작업을 단순화합니다. 이 기능을 사용하면 개발자 및 데이터 과학자가 기계 학습 모델을 훈련하고 튜닝할 때 상당한 시간과 노력을 절약할 수 있습니다. 하이퍼파라미터 튜닝 작업은 완료된 훈련 작업의 결과를 기준으로 서로 다른 하이퍼파라미터 조합을 사용하는 다수의 훈련 작업을 […]

Read More

Amazon SageMaker 노트북 인스턴스에서 로컬 모드 사용하기

최근 Amazon SageMaker에서는 빌드 형태로 제공되는 TensorFlow와 MXNet 컨테이너를 이용하여 로컬 환경에서 모델 학습이 가능하도록 새로운 기능을 지원하기 시작했습니다. 또한, 데이터 훈련과 호스팅을 위한 완전 관리 서비스 뿐 아니라, 정식 운영 환경에서 사전에 빌드된 컨테이너를 배포하는 기능까지 지원할 수 있게 되었습니다. 이전에는 이러한 컨테이너는 Amazon SageMaker에 특화된 환경에서만 사용할 수 있었습니다. 이러한 컨테이너들이 오픈 소스로 […]

Read More