Artificial Intelligence
Category: Amazon SageMaker
Millennium Management: Secure machine learning using Amazon SageMaker
This is a guest post from Millennium Management. In their own words, “Millennium Management is a global investment management firm, established in 1989, with over 2,900 employees and $39.2 billion in assets under management as of August 2, 2019.” Millennium Management is comprised of a large number of specialized trading teams across the United States, […]
Maximizing NLP model performance with automatic model tuning in Amazon SageMaker
The field of Natural Language Processing (NLP) has had many remarkable breakthroughs in the past two years. Advanced deep learning models are raising the state-of-the-art performance standards for NLP tasks. To benefit from newly published NLP models, the best approach is to apply a pre-trained language model to a new dataset and fine-tune it for […]
Interpreting 3D seismic data automatically using Amazon SageMaker
Interpreting 3D seismic data correctly helps identify geological features that may hold or trap oil and gas deposits. Amazon SageMaker and Apache MXNet on AWS can automate horizon picking using deep learning techniques. In this post, I use these services to build and train a custom deep-learning model for the interpretation of geological features on […]
Cinnamon AI saves 70% on ML model training costs with Amazon SageMaker Managed Spot Training
Developers are constantly training and re-training machine learning (ML) models so they can continuously improve model predictions. Depending on the dataset size, model training jobs can take anywhere from a few minutes to multiple hours or days. ML development can be a complex, expensive, and iterative process. Being compute intensive, keeping compute costs low for […]
Building machine learning workflows with AWS Data Exchange and Amazon SageMaker
Thanks to cloud services such as Amazon SageMaker and AWS Data Exchange, machine learning (ML) is now easier than ever. This post explains how to build a model that predicts restaurant grades of NYC restaurants using AWS Data Exchange and Amazon SageMaker. We use a dataset of 23,372 restaurant inspection grades and scores from AWS […]
Running distributed TensorFlow training with Amazon SageMaker
TensorFlow is an open-source machine learning (ML) library widely used to develop heavy-weight deep neural networks (DNNs) that require distributed training using multiple GPUs across multiple hosts. Amazon SageMaker is a managed service that simplifies the ML workflow, starting with labeling data using active learning, hyperparameter tuning, distributed training of models, monitoring of training progression, […]
Auto-segmenting objects when performing semantic segmentation labeling with Amazon SageMaker Ground Truth
Amazon SageMaker Ground Truth helps you build highly accurate training datasets for machine learning (ML) quickly. Ground Truth offers easy access to third-party and your own human labelers and provides them with built-in workflows and interfaces for common labeling tasks. Additionally, Ground Truth can lower your labeling costs by up to 70% using automatic labeling, […]
Introducing Amazon SageMaker Operators for Kubernetes
AWS is excited to introduce Amazon SageMaker Operators for Kubernetes in general availability. This new feature makes it easier for developers and data scientists that use Kubernetes to train, tune, and deploy machine learning (ML) models in Amazon SageMaker. You can install these operators on your Kubernetes cluster to create Amazon SageMaker jobs natively using […]
Save on inference costs by using Amazon SageMaker multi-model endpoints
Businesses are increasingly developing per-user machine learning (ML) models instead of cohort or segment-based models. They train anywhere from hundreds to hundreds of thousands of custom models based on individual user data. For example, a music streaming service trains custom models based on each listener’s music history to personalize music recommendations. A taxi service trains […]
Automating financial decision making with deep reinforcement learning
Machine learning (ML) is routinely used in every sector to make predictions. But beyond simple predictions, making decisions is more complicated because non-optimal short-term decisions are sometimes preferred or even necessary to enable long-term, strategic goals. Optimizing policies to make sequential decisions toward a long-term objective can be learned using a family of ML models […]









