AWS Machine Learning Blog

Category: Announcements

GraphStorm 0.3: Scalable, multi-task learning on graphs with user-friendly APIs

GraphStorm is a low-code enterprise graph machine learning (GML) framework to build, train, and deploy graph ML solutions on complex enterprise-scale graphs in days instead of months. With GraphStorm, you can build solutions that directly take into account the structure of relationships or interactions between billions of entities, which are inherently embedded in most real-world […]

Import a fine-tuned Meta Llama 3 model for SQL query generation on Amazon Bedrock

In this post, we demonstrate the process of fine-tuning Meta Llama 3 8B on SageMaker to specialize it in the generation of SQL queries (text-to-SQL). Meta Llama 3 8B is a relatively small model that offers a balance between performance and resource efficiency. AWS customers have explored fine-tuning Meta Llama 3 8B for the generation of SQL queries—especially when using non-standard SQL dialects—and have requested methods to import their customized models into Amazon Bedrock to benefit from the managed infrastructure and security that Amazon Bedrock provides when serving those models.

Implement web crawling in Amazon Bedrock Knowledge Bases

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading artificial intelligence (AI) companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI. With […]

Amazon SageMaker inference launches faster auto scaling for generative AI models: up-to 6x faster scale-up detection

Today, we are excited to announce a new capability in Amazon SageMaker inference that can help you reduce the time it takes for your generative artificial intelligence (AI) models to scale automatically. This feature can detect the need for scaling model copies up-to 6x faster as compared to traditional mechanisms used by customers. You can […]

Mistral Large 2 is now available in Amazon Bedrock

Mistral AI’s Mistral Large 2 (24.07) foundation model (FM) is now generally available in Amazon Bedrock. Mistral Large 2 is the newest version of Mistral Large, and according to Mistral AI offers significant improvements across multilingual capabilities, math, reasoning, coding, and much more. In this post, we discuss the benefits and capabilities of this new […]

AWS AI chips deliver high performance and low cost for Llama 3.1 models on AWS

Today, we are excited to announce AWS Trainium and AWS Inferentia support for fine-tuning and inference of the Llama 3.1 models. The Llama 3.1 family of multilingual large language models (LLMs) is a collection of pre-trained and instruction tuned generative models in 8B, 70B, and 405B sizes. In a previous post, we covered how to deploy Llama 3 models on AWS Trainium and Inferentia based instances in Amazon SageMaker JumpStart. In this post, we outline how to get started with fine-tuning and deploying the Llama 3.1 family of models on AWS AI chips, to realize their price-performance benefits.

Llama 3.1 models are now available in Amazon SageMaker JumpStart

Today, we are excited to announce that the state-of-the-art Llama 3.1 collection of multilingual large language models (LLMs), which includes pre-trained and instruction tuned generative AI models in 8B, 70B, and 405B sizes, is available through Amazon SageMaker JumpStart to deploy for inference. Llama is a publicly accessible LLM designed for developers, researchers, and businesses to build, experiment, and responsibly scale their generative artificial intelligence (AI) ideas. In this post, we walk through how to discover and deploy Llama 3.1 models using SageMaker JumpStart.

Amazon SageMaker unveils the Cohere Command R fine-tuning model

AWS announced the availability of the Cohere Command R fine-tuning model on Amazon SageMaker. This latest addition to the SageMaker suite of machine learning (ML) capabilities empowers enterprises to harness the power of large language models (LLMs) and unlock their full potential for a wide range of applications. Cohere Command R is a scalable, frontier […]

Amazon Bedrock Knowledge Bases now supports advanced parsing, chunking, and query reformulation giving greater control of accuracy in RAG based applications

Amazon Bedrock Knowledge Bases is a fully managed service that helps you implement the entire Retrieval Augmented Generation (RAG) workflow from ingestion to retrieval and prompt augmentation without having to build custom integrations to data sources and manage data flows, pushing the boundaries for what you can do in your RAG workflows. However, it’s important to […]

Streamline generative AI development in Amazon Bedrock with Prompt Management and Prompt Flows (preview)

Today, we’re excited to introduce two powerful new features for Amazon Bedrock: Prompt Management and Prompt Flows, in public preview. These features are designed to accelerate the development, testing, and deployment of generative artificial intelligence (AI) applications, enabling developers and business users to create more efficient and effective solutions that are easier to maintain. You […]