Artificial Intelligence
Category: Technical How-to
Integrate external tools with Amazon Quick Agents using Model Context Protocol (MCP)
In this post, you’ll use a six-step checklist to build a new MCP server or validate and adjust an existing MCP server for Amazon Quick integration. The Amazon Quick User Guide describes the MCP client behavior and constraints. This is a “How to” guide for detailed implementation required by 3P partners to integrate with Amazon Quick with MCP.
Build AI workflows on Amazon EKS with Union.ai and Flyte
In this post, we explain how you can use the Flyte Python SDK to orchestrate and scale AI/ML workflows. We explore how the Union.ai 2.0 system enables deployment of Flyte on Amazon Elastic Kubernetes Service (Amazon EKS), integrating seamlessly with AWS services like Amazon Simple Storage Service (Amazon S3), Amazon Aurora, AWS Identity and Access Management (IAM), and Amazon CloudWatch. We explore the solution through an AI workflow example, using the new Amazon S3 Vectors service.
Build unified intelligence with Amazon Bedrock AgentCore
In this post, we demonstrate how to build unified intelligence systems using Amazon Bedrock AgentCore through our real-world implementation of the Customer Agent and Knowledge Engine (CAKE).
AI meets HR: Transforming talent acquisition with Amazon Bedrock
In this post, we show how to create an AI-powered recruitment system using Amazon Bedrock, Amazon Bedrock Knowledge Bases, AWS Lambda, and other AWS services to enhance job description creation, candidate communication, and interview preparation while maintaining human oversight.
How Amazon uses Amazon Nova models to automate operational readiness testing for new fulfillment centers
In this post, we discuss how Amazon Nova in Amazon Bedrock can be used to implement an AI-powered image recognition solution that automates the detection and validation of module components, significantly reducing manual verification efforts and improving accuracy.
Scale LLM fine-tuning with Hugging Face and Amazon SageMaker AI
In this post, we show how this integrated approach transforms enterprise LLM fine-tuning from a complex, resource-intensive challenge into a streamlined, scalable solution for achieving better model performance in domain-specific applications.
Accelerate agentic application development with a full-stack starter template for Amazon Bedrock AgentCore
In this post, you will learn how to deploy Fullstack AgentCore Solution Template (FAST) to your Amazon Web Services (AWS) account, understand its architecture, and see how to extend it for your requirements. You will learn how to build your own agent while FAST handles authentication, infrastructure as code (IaC), deployment pipelines, and service integration.
Structured outputs on Amazon Bedrock: Schema-compliant AI responses
Today, we’re announcing structured outputs on Amazon Bedrock—a capability that fundamentally transforms how you can obtain validated JSON responses from foundation models through constrained decoding for schema compliance. In this post, we explore the challenges of traditional JSON generation and how structured outputs solves them. We cover the two core mechanisms—JSON Schema output format and strict tool use—along with implementation details, best practices, and practical code examples.
Evaluate generative AI models with an Amazon Nova rubric-based LLM judge on Amazon SageMaker AI (Part 2)
In this post, we explore the Amazon Nova rubric-based judge feature: what a rubric-based judge is, how the judge is trained, what metrics to consider, and how to calibrate the judge. We chare notebook code of the Amazon Nova rubric-based LLM-as-a-judge methodology to evaluate and compare the outputs of two different LLMs using SageMaker training jobs.
Accelerating your marketing ideation with generative AI – Part 2: Generate custom marketing images from historical references
Building upon our earlier work of marketing campaign image generation using Amazon Nova foundation models, in this post, we demonstrate how to enhance image generation by learning from previous marketing campaigns. We explore how to integrate Amazon Bedrock, AWS Lambda, and Amazon OpenSearch Serverless to create an advanced image generation system that uses reference campaigns to maintain brand guidelines, deliver consistent content, and enhance the effectiveness and efficiency of new campaign creation.









