AWS Machine Learning Blog
Category: Technical How-to
Use language embeddings for zero-shot classification and semantic search with Amazon Bedrock
In this post, we explore what language embeddings are and how they can be used to enhance your application. We show how, by using the properties of embeddings, we can implement a real-time zero-shot classifier and can add powerful features such as semantic search.
Fine-tune LLMs with synthetic data for context-based Q&A using Amazon Bedrock
In this post, we explore how to use Amazon Bedrock to generate synthetic training data to fine-tune an LLM. Additionally, we provide concrete evaluation results that showcase the power of synthetic data in fine-tuning when data is scarce.
Achieve ~2x speed-up in LLM inference with Medusa-1 on Amazon SageMaker AI
Researchers developed Medusa, a framework to speed up LLM inference by adding extra heads to predict multiple tokens simultaneously. This post demonstrates how to use Medusa-1, the first version of the framework, to speed up an LLM by fine-tuning it on Amazon SageMaker AI and confirms the speed up with deployment and a simple load test. Medusa-1 achieves an inference speedup of around two times without sacrificing model quality, with the exact improvement varying based on model size and data used. In this post, we demonstrate its effectiveness with a 1.8 times speedup observed on a sample dataset.
Amazon Q Business simplifies integration of enterprise knowledge bases at scale
In this post, we demonstrate how to build a knowledge base solution by integrating enterprise data with Amazon Q Business using Amazon S3. This approach helps organizations improve operational efficiency, reduce response times, and gain valuable insights from their historical data. The solution uses AWS security best practices to promote data protection while enabling teams to create a comprehensive knowledge base from various data sources.
Faster distributed graph neural network training with GraphStorm v0.4
GraphStorm is a low-code enterprise graph machine learning (ML) framework that provides ML practitioners a simple way of building, training, and deploying graph ML solutions on industry-scale graph data. In this post, we demonstrate how GraphBolt enhances GraphStorm’s performance in distributed settings. We provide a hands-on example of using GraphStorm with GraphBolt on SageMaker for distributed training. Lastly, we share how to use Amazon SageMaker Pipelines with GraphStorm.
Automate bulk image editing with Crop.photo and Amazon Rekognition
In this post, we explore how Crop.photo uses Amazon Rekognition to provide sophisticated image analysis, enabling automated and precise editing of large volumes of images. This integration streamlines the image editing process for clients, providing speed and accuracy, which is crucial in the fast-paced environments of ecommerce and sports.
Governing the ML lifecycle at scale, Part 4: Scaling MLOps with security and governance controls
This post provides detailed steps for setting up the key components of a multi-account ML platform. This includes configuring the ML Shared Services Account, which manages the central templates, model registry, and deployment pipelines; sharing the ML Admin and SageMaker Projects Portfolios from the central Service Catalog; and setting up the individual ML Development Accounts where data scientists can build and train models.
Fine-tune and host SDXL models cost-effectively with AWS Inferentia2
As technology continues to evolve, newer models are emerging, offering higher quality, increased flexibility, and faster image generation capabilities. One such groundbreaking model is Stable Diffusion XL (SDXL), released by StabilityAI, advancing the text-to-image generative AI technology to unprecedented heights. In this post, we demonstrate how to efficiently fine-tune the SDXL model using SageMaker Studio. We show how to then prepare the fine-tuned model to run on AWS Inferentia2 powered Amazon EC2 Inf2 instances, unlocking superior price performance for your inference workloads.
Enhancing LLM Capabilities with NeMo Guardrails on Amazon SageMaker JumpStart
Integrating NeMo Guardrails with Large Language Models (LLMs) is a powerful step forward in deploying AI in customer-facing applications. The example of AnyCompany Pet Supplies illustrates how these technologies can enhance customer interactions while handling refusal and guiding the conversation toward the implemented outcomes. This journey towards ethical AI deployment is crucial for building sustainable, trust-based relationships with customers and shaping a future where technology aligns seamlessly with human values.
Build a multi-interface AI assistant using Amazon Q and Slack with Amazon CloudFront clickable references from an Amazon S3 bucket
There is consistent customer feedback that AI assistants are the most useful when users can interface with them within the productivity tools they already use on a daily basis, to avoid switching applications and context. Web applications like Amazon Q Business and Slack have become essential environments for modern AI assistant deployment. This post explores how diverse interfaces enhance user interaction, improve accessibility, and cater to varying preferences.