Artificial Intelligence

Category: Partner solutions

How SkillShow automates youth sports video processing using Amazon Transcribe

SkillShow, a leader in youth sports video production, films over 300 events yearly in the youth sports industry, creating content for over 20,000 young athletes annually. This post describes how SkillShow used Amazon Transcribe and other Amazon Web Services (AWS) machine learning (ML) services to automate their video processing workflow, reducing editing time and costs while scaling their operations.

Extend your Amazon Q Business with PagerDuty Advance data accessor

In this post, we demonstrate how organizations can enhance their incident management capabilities by integrating PagerDuty Advance, an innovative set of agentic and generative AI capabilities that automate response workflows and provide real-time insights into operational health, with Amazon Q Business. We show how to configure PagerDuty Advance as a data accessor for Amazon Q indexes, so you can search and access enterprise knowledge across multiple systems during incident response.

Safe Workplace

Accelerate edge AI development with SiMa.ai Edgematic with a seamless AWS integration

In this post, we demonstrate how to retrain and quantize a model using SageMaker AI and the SiMa.ai Palette software suite. The goal is to accurately detect individuals in environments where visibility and protective equipment detection are essential for compliance and safety.

InterVision accelerates AI development using AWS LLM League and Amazon SageMaker AI

This post demonstrates how AWS LLM League’s gamified enablement accelerates partners’ practical AI development capabilities, while showcasing how fine-tuning smaller language models can deliver cost-effective, specialized solutions for specific industry needs.

Optimizing AI implementation costs with Automat-it

In this guest post, we explain how AWS Partner Automat-it helped their customer achieve a more than twelvefold cost savings while keeping AI model performance within the required performance thresholds. This was accomplished through careful tuning of architecture, algorithm selection, and infrastructure management.

Appian Architecture diagram

Revolutionizing business processes with Amazon Bedrock and Appian’s generative AI skills

AWS and Appian’s collaboration marks a significant advancement in business process automation. By using the power of Amazon Bedrock and Anthropic’s Claude models, Appian empowers enterprises to optimize and automate processes for greater efficiency and effectiveness. This blog post will cover how Appian AI skills build automation into organizations’ mission-critical processes to improve operational excellence, reduce costs, and build scalable solutions.

HCLTech’s AWS powered AutoWise Companion: A seamless experience for informed automotive buyer decisions with data-driven design

This post introduces HCLTech’s AutoWise Companion, a transformative generative AI solution designed to enhance customers’ vehicle purchasing journey. In this post, we analyze the current industry challenges and guide readers through the AutoWise Companion solution functional flow and architecture design using built-in AWS services and open source tools. Additionally, we discuss the design from security and responsible AI perspectives, demonstrating how you can apply this solution to a wider range of industry scenarios.

Improving Retrieval Augmented Generation accuracy with GraphRAG

Lettria, an AWS Partner, demonstrated that integrating graph-based structures into RAG workflows improves answer precision by up to 35% compared to vector-only retrieval methods. In this post, we explore why GraphRAG is more comprehensive and explainable than vector RAG alone, and how you can use this approach using AWS services and Lettria.

Figure 2: Depicting high level architecture of Tecton & SageMaker showing end-to-end feature lifecycle

Real value, real time: Production AI with Amazon SageMaker and Tecton

In this post, we discuss how Amazon SageMaker and Tecton work together to simplify the development and deployment of production-ready AI applications, particularly for real-time use cases like fraud detection. The integration enables faster time to value by abstracting away complex engineering tasks, allowing teams to focus on building features and use cases while providing a streamlined framework for both offline training and online serving of ML models.