亚马逊AWS官方博客

基于 AWS KMS 的加密现已可用于 Amazon SageMaker 中的训练和托管

Amazon SageMaker 使用一次性密钥 (也称为瞬态密钥) 加密所连接的 ML 通用型存储卷,用以训练和托管 EC2 实例。由于这些密钥均用于加密 ML 存储卷,并且在用后立即丢弃,因此可用卷来安全地存储机密数据。卷仅可通过相关联的实例访问,而这些实例会对访问权限加以控制。在实例终止之后,ML 卷将被删除,卷中的数据将无法再访问。 对于使用通过 AWS Key Management Service (KMS) 管理的密钥的功能 – 类似于指定 KMS 主密钥 ID 时,对于附加到笔记本电脑实例的存储的加密方式,客户呼声甚高。 即日起,您就可以选择使用 KMS 主密钥加密您的训练和托管数据了。这让您可以为分布式训练和模型托管利用多种 AWS KMS 功能,例如集中密钥管理、密钥使用情况审核日志记录、主实例密钥轮换等等。 为加密训练数据,可在对 CreateTrainingJob API 的调用中指定一个 KMS 主密钥。对于托管,可在对 CreateEndpointConfig API 的调用中指定密钥。 有关 Amazon SageMaker 和 KMS 的更多信息,请参阅 Amazon SageMaker 开发人员指南。 作者简介 Kumar Venkateswar 是 AWS ML 平台团队的产品经理,该团队开发的产品包括 […]

Read More

Amazon SageMaker BlazingText:在多个 CPU 或 GPU 上并行处理 Word2Vec

今天,我们推出了 Amazon SageMaker 的最新内置算法 Amazon SageMaker BlazingText。BlazingText 是一种无监督学习算法,用于生成 Word2Vec 嵌入,即单词在大型语料库中的密集向量表示。我们很高兴构建了 BlazingText,它可以最快的速度实现 Word2Vec,供 Amazon SageMaker 用户在以下实例上使用:

单一 CPU 实例 (Mikolov 和 fastText 的原始 C 实现)
使用多个 GPU、P2 或 P3 的单一实例
多个 CPU 实例 (分布式 CPU 训练)

Read More

使用 NNPACK 库加速 Apache MXNet

Apache MXNet 是供开发人员构建、训练和重复使用深度学习网络的开源库。在这篇博文中,我将向您介绍如何使用 NNPACK 库来加速推理。事实上,当 GPU 推理不可用时,要想从实例中获取更多性能,将 NNPACK 添加到 Apache MXNet 中或许不失为一种简单的方法。和往常一样,“您的情况可能会有所不同”,而且您应该始终运行自己的测试。

Read More

新功能 – 区域间 VPC 对等连接

今天我要向您介绍的是区域间 VPC 对等连接。早在 2014 年年初,您就已经能够在同一 AWS 区域的 Virtual Private Cloud (VPC) 之间创建对等连接 (请阅读 Amazon Virtual Cloud 的新 VPC 对等连接功能了解更多信息)。建立连接后,对等 VPC 中的 EC2 实例可以使用自己的私有 IP 地址跨对等连接相互通信,就像它们位于同一网络中一样。

Read More

AWS Deep Learning AMI 现在推出 TensorFlow 1.5 和全新 Model Serving 功能

AWS Deep Learning AMI 可帮助您快速轻松地开始使用机器学习。AMI 包含大量预建选项,可满足机器学习从业者的各种需求。如果您需要常见深度学习框架的最新版本,Deep Learning AMI 可提供在基于 Conda 的独立虚拟环境中安装的预建 pip 二进制文件。如果您希望测试高级框架功能或者对框架源代码进行微调,包含源代码的 Deep Learning AMI 可提供基于源的自定义框架安装。这些框架通常内建了常见二进制文件中没有的高级优化功能。

Read More

Zocdoc 在 AWS 上使用 TensorFlow 帮助患者安心看病

医疗保健行业的情况非常复杂。最近的调查表明,超过一半的美国人不清楚所持保险涵盖的范围,四分之三的人希望通过更简单的方法来确认医生是否在保险公司网络内。

Zocdoc 帮助患者理清了这一混乱局面,让需要医疗保健的个人能够做出更明智的选择,同时找到满足其需求的医疗服务。Zocdoc 致力于优化医疗保健数据来帮助患者,支持其完成该使命的核心就是 AWS 上的深度学习。有了使用 TensorFlow 深度学习框架构建的算法,Zocdoc 可更高效地为患者分配医生。患者可预约 24 小时内看诊,过去全国新患者等待看诊的平均等待时间为 24 天。

Read More

最新 EC2 好东西 – 启动模板与分布置放

AWS re:Invent 推出了多项重要的 EC2 实例类型和功能。 我已经给大家介绍了 M5、H1、T2 无限版和 Bare Metal 实例,以及休眠和新定价模型等竞价功能,Randall 也给大家介绍了 Amazon Time Sync Service,今天我将介绍两个新的功能:分布置放组和启动模板。这两个功能都通过 EC2 控制台和 EC2 API 调用,可以在“aws”分区中的所有 AWS 区域使用。

Read More

利用机器学习和 BI 服务构建社交媒体控制面板

在这篇博文中,我们将展示如何利用 Amazon Translate、Amazon Comprehend、Amazon Kinesis、Amazon Athena 和 Amazon QuickSight 构建受自然语言处理 (NLP) 支持的社交媒体控制面板,以便处理推文。 组织与客户之间的社交媒体交互可以深化品牌认知度。这些交流是发掘销售线索、增加网站流量、发展客户关系并改进客户服务的低成本方法。 在这篇博文中,我们将构建无服务器数据处理和机器学习 (ML) 管道,在 Amazon QuickSight 中提供处理推文的多语言社交媒体控制面板。我们将利用 API 驱动的 ML 服务,来让开发人员只需调用高度可用、可扩展、安全的终端节点,便可轻松向任何应用程序添加智能功能,例如计算机视觉、语音、语言分析和聊天自动程序功能。借助 AWS 内的无服务器产品,这些构建块只需极少的代码便可整合在一起。在这篇博文中,我们将对流经系统的推文执行语言翻译和自然语言处理。 除了构建社交媒体控制面板之外,我们还希望捕获原始数据集和充实后的数据集,并将其长期存储在数据湖中。这将允许数据分析师快速轻松地对此数据执行新型分析和机器学习。 在这篇博文中,我们将展示如何实现以下操作: 利用 Amazon Kinesis Data Firehose 轻松捕获和准备实时数据流,并将其加载到数据存储、数据仓库和数据湖中。在本例中,我们使用的是 Amazon S3。 触发 AWS Lambda 以使用 Amazon Translate 和 Amazon Comprehend (来自 AWS 的两种完全托管式服务) 分析推文。仅需几行代码,我们就能利用这些服务将推文翻译为不同语言,并对推文执行自然语言处理 (NLP)。 在 Amazon Kinesis Data Firehose 内利用独立的 […]

Read More