AWS Big Data Blog
Migrating from Vertica to Amazon Redshift
Amazon Redshift powers analytical workloads for Fortune 500 companies, startups, and everything in between. With Amazon Redshift, you can query petabytes of structured and semi-structured data across your data warehouse, operational database, and your data lake using standard SQL. When you use Vertica, you have to install and upgrade Vertica database software and manage the […]
Building an event-driven application with AWS Lambda and the Amazon Redshift Data API
Event–driven applications are becoming popular with many customers, where applications run in response to events. A primary benefit of this architecture is the decoupling of producer and consumer processes, allowing greater flexibility in application design and building decoupled processes. An example of an even-driven application is an automated workflow being triggered by an event, which […]
Redacting sensitive information with user-defined functions in Amazon Athena
Amazon Athena now supports user-defined functions (in Preview), a feature that enables you to write custom scalar functions and invoke them in SQL queries. Although Athena provides built-in functions, UDFs enable you to perform custom processing such as compressing and decompressing data, redacting sensitive data, or applying customized decryption. You can write your UDFs in […]
Federated API access to Amazon Redshift using an Amazon Redshift connector for Python
July 2023: This post was reviewed for accuracy. Amazon Redshift is the leading cloud data warehouse that delivers performance 10 times faster at one-tenth of the cost of traditional data warehouses by using massively parallel query execution, columnar storage on high-performance disks, and results caching. You can confidently run mission-critical workloads, even in highly regulated […]
Handling data erasure requests in your data lake with Amazon S3 Find and Forget
February 2024: This post was reviewed and updated for accuracy. Data lakes are a popular choice for organizations to store data around their business activities. Best practice design of data lakes impose that data is immutable once stored, but new regulations such as the European General Data Protection Regulation (GDPR), California Consumer Privacy Act (CCPA), […]
Extracting and joining data from multiple data sources with Athena Federated Query
With modern day architectures, it’s common to have data sitting in various data sources. We need proper tools and technologies across those sources to create meaningful insights from stored data. Amazon Athena is primarily used as an interactive query service that makes it easy to analyze unstructured, semi-structured, and structured data stored in Amazon Simple […]
How the ZS COVID-19 Intelligence Engine helps Pharma & Med device manufacturers understand local healthcare needs & gaps at scale
This post is co-written by Parijat Sharma: Principal, Strategy & Transformation, Wenhao Xia: Manager, Data Science, Vineeth Sandadi: Manager, Business Consulting from ZS Associates, Inc, Arianna Tousi: Strategy, Insights and Planning Consultant from ZS, Gopi Vikranth: Associate Principal from ZS. In their own words, “We’re passionately committed to helping our clients and their customers thrive, […]
AWS serverless data analytics pipeline reference architecture
May 2025: This post was reviewed and updated for accuracy. Onboarding new data or building new analytics pipelines in traditional analytics architectures typically requires extensive coordination across business, data engineering, and data science and analytics teams to first negotiate requirements, schema, infrastructure capacity needs, and workload management. For a large number of use cases today […]
Big data processing in a data warehouse environment using AWS Glue 2.0 and PySpark
The AWS Marketing Data Science and Engineering team enables AWS Marketing to measure the effectiveness and impact of various marketing initiatives and campaigns. This is done through a data platform and infrastructure strategy that consists of maintaining data warehouse, data lake, and data transformation (ETL) pipelines, and designing software tools and services to run related […]
Accessing external components using Amazon Redshift Lambda UDFs
Amazon Redshift is a fast, scalable, secure, and fully managed cloud data warehouse. It makes it simple and cost-effective to analyze all your data using standard SQL, your existing ETL (extract, transform, and load), business intelligence (BI), and reporting tools. Tens of thousands of customers use Amazon Redshift to process exabytes of data per day […]









