AWS Big Data Blog

Category: AWS Big Data

Separating queries and managing costs using Amazon Athena workgroups

Amazon Athena is a serverless query engine for data on Amazon S3. Many customers use Athena to query application and service logs, schedule automated reports, and integrate with their applications, enabling new analytics-based capabilities. Different types of users rely on Athena, including business analysts, data scientists, security, and operations engineers. In this post, I show you how to use workgroups to separate workloads, control user access, and manage query usage and costs.

Read More

Orchestrating an ETL process using AWS Step Functions for Amazon Redshift

Modern data lakes depend on extract, transform, and load (ETL) operations to convert bulk information into usable data. This post walks through implementing an ETL orchestration process that is loosely coupled using AWS Step Functions, AWS Lambda, and AWS Batch to target an Amazon Redshift cluster.

Read More

Setting alerts in Amazon Elasticsearch Service

On April 8, Amazon ES launched support for event monitoring and alerting. To use this feature, you work with monitors—scheduled jobs—that have triggers, which are specific conditions that you set, telling the monitor when it should send an alert. An alert is a notification that the triggering condition occurred. When a trigger fires, the monitor takes action, sending a message to your destination.

This post uses a simulated IoT device farm to generate and send data to Amazon ES.

Read More

Modifying your cluster on the fly with Amazon EMR reconfiguration

If you are a developer or data scientist using long-running Amazon EMR clusters, you face fast-changing workloads. These changes often require different application configurations to run optimally on your cluster. With the reconfiguration feature, you can now change configurations on running EMR clusters. Starting with EMR release emr-5.21.0, this feature allows you to modify configurations […]

Read More

Detect fraudulent calls using Amazon QuickSight ML insights

The financial impact of fraud in any industry is massive. According to the Financial Times article Fraud Costs Telecoms Industry $17bn a Year (paid subscription required), fraud costs the telecommunications industry $17 billion in lost revenues every year. Fraudsters constantly look for new technologies and devise new techniques. This changes fraud patterns and makes detection […]

Read More

Performance updates to Apache Spark in Amazon EMR 5.24 – Up to 13x better performance compared to Amazon EMR 5.16

Amazon EMR release 5.24.0 includes several optimizations in Spark that improve query performance. To evaluate the performance improvements, we used TPC-DS benchmark queries with 3-TB scale and ran them on a 6-node c4.8xlarge EMR cluster with data in Amazon S3. We observed up to 13X better query performance on EMR 5.24 compared to EMR 5.16 when operating with a similar configuration.

Read More

Introducing Amazon QuickSight fine-grained access control over Amazon S3 and Amazon Athena

Today, AWS is excited to announce the availability of fine-grained access control for AWS Identity and Access Management (IAM)-permissioned resources in Amazon QuickSight. Fine-grained access control allows Amazon QuickSight account administrators to control authors’ default access to connected AWS resources. Fine-grained access control enables administrators to use IAM policies to scope down access permissions, limiting specific authors’ access to specific items within the AWS resources. Administrators can now apply this new level of access control to Amazon S3, Amazon Athena, and Amazon RDS/Redshift database discovery.

Read More

How 3M Health Information Systems built a healthcare data reporting tool with Amazon Redshift

After reviewing many solutions, 3M HIS chose Amazon Redshift as the appropriate data warehouse solution. We concluded Amazon Redshift met our needs; a fast, fully managed, petabyte-scale data warehouse solution that uses columnar storage to minimize I/O, provides high data compression rates, and offers fast performance. We quickly spun up a cluster in our development environment, built out the dimensional model, loaded data, and made it available to perform benchmarking and testing of the user data. An extract, transform, load (ETL) tool was used to process and load the data from various sources into Amazon Redshift.

Read More