AWS Big Data Blog

Category: AWS Glue

Orchestrate Amazon Redshift-Based ETL workflows with AWS Step Functions and AWS Glue

In this post, I show how to use AWS Step Functions and AWS Glue Python Shell to orchestrate tasks for those Amazon Redshift-based ETL workflows in a completely serverless fashion. AWS Glue Python Shell is a Python runtime environment for running small to medium-sized ETL tasks, such as submitting SQL queries and waiting for a response. Step Functions lets you coordinate multiple AWS services into workflows so you can easily run and monitor a series of ETL tasks. Both AWS Glue Python Shell and Step Functions are serverless, allowing you to automatically run and scale them in response to events you define, rather than requiring you to provision, scale, and manage servers.

Read More

Perform biomedical informatics without a database using MIMIC-III data and Amazon Athena

This post describes how to make the MIMIC-III dataset available in Athena and provide automated access to an analysis environment for MIMIC-III on AWS. We also compare a MIMIC-III reference bioinformatics study using a traditional database to that same study using Athena.

Read More

Load ongoing data lake changes with AWS DMS and AWS Glue

Building a data lake on Amazon S3 provides an organization with countless benefits. It allows you to access diverse data sources, determine unique relationships, build AI/ML models to provide customized customer experiences, and accelerate the curation of new datasets for consumption. However, capturing and loading continuously changing updates from operational data stores—whether on-premises or on […]

Read More

Detect fraudulent calls using Amazon QuickSight ML insights

The financial impact of fraud in any industry is massive. According to the Financial Times article Fraud Costs Telecoms Industry $17bn a Year (paid subscription required), fraud costs the telecommunications industry $17 billion in lost revenues every year. Fraudsters constantly look for new technologies and devise new techniques. This changes fraud patterns and makes detection […]

Read More

How to export an Amazon DynamoDB table to Amazon S3 using AWS Step Functions and AWS Glue

In this post, I show you how to use AWS Glue’s DynamoDB integration and AWS Step Functions to create a workflow to export your DynamoDB tables to S3 in Parquet. I also show how to create an Athena view for each table’s latest snapshot, giving you a consistent view of your DynamoDB table exports.

Read More

Trigger cross-region replication of pre-existing objects using Amazon S3 inventory, Amazon EMR, and Amazon Athena

In Amazon Simple Storage Service (Amazon S3), you can use cross-region replication (CRR) to copy objects automatically and asynchronously across buckets in different AWS Regions. CRR is a bucket-level configuration, and it can help you meet compliance requirements and minimize latency by keeping copies of your data in different Regions. CRR replicates all objects in […]

Read More

Build and automate a serverless data lake using an AWS Glue trigger for the Data Catalog and ETL jobs

Today, data is flowing from everywhere, whether it is unstructured data from resources like IoT sensors, application logs, and clickstreams, or structured data from transaction applications, relational databases, and spreadsheets. Data has become a crucial part of every business. This has resulted in a need to maintain a single source of truth and automate the […]

Read More

Create real-time clickstream sessions and run analytics with Amazon Kinesis Data Analytics, AWS Glue, and Amazon Athena

Clickstream events are small pieces of data that are generated continuously with high speed and volume. Often, clickstream events are generated by user actions, and it is useful to analyze them. For example, you can detect user behavior in a website or application by analyzing the sequence of clicks a user makes, the amount of […]

Read More