AWS Big Data Blog

Category: AWS Glue

Analyze Apache Parquet optimized data using Amazon Kinesis Data Firehose, Amazon Athena, and Amazon Redshift

Kinesis Data Firehose can now save data to Amazon S3 in Apache Parquet or Apache ORC format. These are optimized columnar formats that are highly recommended for best performance and cost-savings when querying data in S3. This feature directly benefits you if you use Amazon Athena, Amazon Redshift, AWS Glue, Amazon EMR, or any other big data tools that are available from the AWS Partner Network and through the open-source community.

Read More

Work with partitioned data in AWS Glue

In this post, we show you how to efficiently process partitioned datasets using AWS Glue. First, we cover how to set up a crawler to automatically scan your partitioned dataset and create a table and partitions in the AWS Glue Data Catalog. Then, we introduce some features of the AWS Glue ETL library for working with partitioned data.

Read More

How to retain system tables’ data spanning multiple Amazon Redshift clusters and run cross-cluster diagnostic queries

In this blog post, I present a solution that exports system tables from multiple Amazon Redshift clusters into an Amazon S3 bucket. This solution is serverless, and you can schedule it as frequently as every five minutes. The AWS CloudFormation deployment template that I provide automates the solution setup in your environment. The system tables’ data in the Amazon S3 bucket is partitioned by cluster name and query execution date to enable efficient joins in cross-cluster diagnostic queries.

Read More

Simplify Querying Nested JSON with the AWS Glue Relationalize Transform

AWS Glue has a transform called Relationalize that simplifies the extract, transform, load (ETL) process by converting nested JSON into columns that you can easily import into relational databases. Relationalize transforms the nested JSON into key-value pairs at the outermost level of the JSON document. The transformed data maintains a list of the original keys from the nested JSON separated by periods. Let’s look at how Relationalize can help you with a sample use case.

Read More

Using Amazon Redshift Spectrum, Amazon Athena, and AWS Glue with Node.js in Production

This is a guest post by Rafi Ton, founder and CEO of NUVIAD. The ability to provide fresh, up-to-the-minute data to our customers and partners was always a main goal with our platform. We saw other solutions provide data that was a few hours old, but this was not good enough for us. We insisted on providing the freshest data possible. For us, that meant loading Amazon Redshift in frequent micro batches and allowing our customers to query Amazon Redshift directly to get results in near real time. The benefits were immediately evident. Our customers could see how their campaigns performed faster than with other solutions, and react sooner to the ever-changing media supply pricing and availability. They were very happy.

Read More