AWS Big Data Blog

Category: Best Practices

Diagram to illustrate soft multi-tenancy

Design considerations for Amazon EMR on EKS in a multi-tenant Amazon EKS environment

Many AWS customers use Amazon Elastic Kubernetes Service (Amazon EKS) in order to take advantage of Kubernetes without the burden of managing the Kubernetes control plane. With Kubernetes, you can centrally manage your workloads and offer administrators a multi-tenant environment where they can create, update, scale, and secure workloads using a single API. Kubernetes also […]

Read More

Choose the k-NN algorithm for your billion-scale use case with OpenSearch

When organizations set out to build machine learning (ML) applications such as natural language processing (NLP) systems, recommendation engines, or search-based systems, often times k-Nearest Neighbor (k-NN) search will be used at some point in the workflow. As the number of data points reaches the hundreds of millions or even billions, scaling a k-NN search […]

Read More

Best practices to optimize cost and performance for AWS Glue streaming ETL jobs

AWS Glue streaming extract, transform, and load (ETL) jobs allow you to process and enrich vast amounts of incoming data from systems such as Amazon Kinesis Data Streams, Amazon Managed Streaming for Apache Kafka (Amazon MSK), or any other Apache Kafka cluster. It uses the Spark Structured Streaming framework to perform data processing in near-real […]

Read More
BDB-2071-Virtual_key_2

New features from Apache Hudi 0.9.0 on Amazon EMR

Apache Hudi is an open-source transactional data lake framework that greatly simplifies incremental data processing and data pipeline development. It does this by providing transaction support and record-level insert, update, and delete capabilities on data lakes on Amazon Simple Storage Service (Amazon S3) or Apache HDFS. Apache Hudi is integrated with open-source big data analytics […]

Read More

What to consider when migrating data warehouse to Amazon Redshift

Customers are migrating data warehouses to Amazon Redshift because it’s fast, scalable, and cost-effective. However, data warehouse migration projects can be complex and challenging. In this post, I help you understand the common drivers of data warehouse migration, migration strategies, and what tools and services are available to assist with your migration project. Let’s first […]

Read More

Unify log aggregation and analytics across compute platforms

Our customers want to make sure their users have the best experience running their application on AWS. To make this happen, you need to monitor and fix software problems as quickly as possible. Doing this gets challenging with the growing volume of data needing to be quickly detected, analyzed, and stored. In this post, we […]

Read More
Amazon OpenSearch Service Storage

Choose the right storage tier for your needs in Amazon OpenSearch Service

Amazon OpenSearch Service enables organizations to perform interactive log analytics, real-time application monitoring, website search, and more. OpenSearch is an open-source, distributed search and analytics suite derived from Elasticsearch. Amazon OpenSearch Service offers the latest versions of OpenSearch, support for 19 versions of Elasticsearch (1.5 to 7.10 versions), and visualization capabilities powered by OpenSearch Dashboards […]

Read More

Cybersecurity Awareness Month: Learn about the job zero of securing your data using Amazon Redshift

Amazon Redshift is the most widely used cloud data warehouse. It allows you to run complex analytic queries against terabytes to petabytes of structured and semi-structured data, using sophisticated query optimization, columnar on high-performance storage, and massively parallel query execution. At AWS, we embrace the culture that security is job zero, by which we mean […]

Read More

Best practices to scale Apache Spark jobs and partition data with AWS Glue

The first post of this series discusses two key AWS Glue capabilities to manage the scaling of data processing jobs. The first allows you to horizontally scale out Apache Spark applications for large splittable datasets. The second allows you to vertically scale up memory-intensive Apache Spark applications with the help of new AWS Glue worker types. The post also shows how to use AWS Glue to scale Apache Spark applications with a large number of small files commonly ingested from streaming applications using Amazon Kinesis Data Firehose. Finally, the post shows how AWS Glue jobs can use the partitioning structure for large datasets in Amazon S3 to provide faster execution times for Apache Spark applications.

Read More

Test data quality at scale with Deequ

In this blog post, we introduce Deequ, an open source tool developed and used at Amazon. Deequ allows you to calculate data quality metrics on your dataset, define and verify data quality constraints, and be informed about changes in the data distribution. Instead of implementing checks and verification algorithms on your own, you can focus on describing how your data should look.

Read More