AWS Big Data Blog

Category: Analytics*

Using Amazon Redshift Spectrum, Amazon Athena, and AWS Glue with Node.js in Production

This is a guest post by Rafi Ton, founder and CEO of NUVIAD. The ability to provide fresh, up-to-the-minute data to our customers and partners was always a main goal with our platform. We saw other solutions provide data that was a few hours old, but this was not good enough for us. We insisted on providing the freshest data possible. For us, that meant loading Amazon Redshift in frequent micro batches and allowing our customers to query Amazon Redshift directly to get results in near real time. The benefits were immediately evident. Our customers could see how their campaigns performed faster than with other solutions, and react sooner to the ever-changing media supply pricing and availability. They were very happy.

Read More

Visualize AWS Cloudtrail Logs using AWS Glue and Amazon Quicksight

In this post, I walk through using AWS Glue and AWS Lambda to convert AWS CloudTrail logs from JSON to a query-optimized format dataset in Amazon S3. I then use Amazon Athena and Amazon QuickSight to query and visualize the data.

Read More

Build a Data Lake Foundation with AWS Glue and Amazon S3

A data lake is an increasingly popular way to store and analyze data that addresses the challenges of dealing with massive volumes of heterogeneous data. A data lake allows organizations to store all their data—structured and unstructured—in one centralized repository. Because data can be stored as-is, there is no need to convert it to a predefined schema. This post walks you through the process of using AWS Glue to crawl your data on Amazon S3 and build a metadata store that can be used with other AWS offerings.

Read More

Amazon QuickSight Adds Support for Combo Charts and Row-Level Security

We are excited to announce support for two new features in Amazon QuickSight: 1) Combo charts, the first visual type in QuickSight to support dual-axis visualization, and 2) Row-Level Security, which allows access control over data at the row level based on the user who is accessing QuickSight. Together, these features enable you to present more engaging and personalized dashboards in Amazon QuickSight, while enforcing stricter controls over data.

Read More

Predict Billboard Top 10 Hits Using RStudio, H2O and Amazon Athena

In this walkthrough, you leverage H2O.ai, Amazon Athena, and RStudio to make predictions on whether a song might make it to the Top 10 Billboard charts. You explore the GLM, GBM, and deep learning modeling techniques using H2O’s rapid, distributed and easy-to-use open source parallel processing engine.

Read More

Preprocessing Data in Amazon Kinesis Analytics with AWS Lambda

Kinesis Analytics now gives you the option to preprocess your data with AWS Lambda. This gives you a great deal of flexibility in defining what data gets analyzed by your Kinesis Analytics application. In this post, I discuss some common use cases for preprocessing, and walk you through an example to help highlight its applicability.

Read More

Build a Schema-On-Read Analytics Pipeline Using Amazon Athena

In this post, I show how to build a schema-on-read analytical pipeline, similar to the one used with relational databases, using Amazon Athena. The approach is completely serverless, which allows the analytical platform to scale as more data is stored and processed via the pipeline.

Read More

Amazon QuickSight Now Allows Users to Create Analyses from Dashboards and Import Custom Date Formats

Starting today, QuickSight will allow users to save the contents of a dashboard as an analysis within their account. As the user of a dashboard, this will allow you to create an analysis that contains all visuals from the dashboard.

Read More

Query and Visualize AWS Cost and Usage Data Using Amazon Athena and Amazon QuickSight

If you’ve ever wondered if a serverless alternative existed for consuming and querying your AWS Cost and Usage report data, then wonder no more. The answer is yes, and this post both introduces you to that solution and illustrates the simplicity and effortlessness of deploying it.

Read More