AWS Big Data Blog

Category: Advanced (300)

Introducing the HubSpot connector for AWS Glue

This post introduces the new HubSpot managed connector for AWS Glue, and demonstrates how you can integrate HubSpot data into your existing data lake on AWS. By consolidating HubSpot data with data from your AWS accounts and from other SaaS services, you can enhance, analyze, and optionally write the data back to HubSpot, creating a seamless and integrated data experience.

Architecture

Develop a business chargeback model within your organization using Amazon Redshift multi-warehouse writes

Now, we are announcing general availability (GA) of Amazon Redshift multi-data warehouse writes through data sharing. This new capability allows you to scale your write workloads and achieve better performance for extract, transform, and load (ETL) workloads by using different warehouses of different types and sizes based on your workload needs.

Run Apache XTable in AWS Lambda for background conversion of open table formats

In this post, we explore how Apache XTable, combined with the AWS Glue Data Catalog, enables background conversions between open table formats residing on Amazon S3-based data lakes, with minimal to no changes to existing pipelines, in a scalable and cost-effective way.

Manage access controls in generative AI-powered search applications using Amazon OpenSearch Service and Amazon Cognito

In this post, we show you how to manage user access to enterprise documents in generative AI-powered tools according to the access you assign to each persona. This post illustrates how to build a document search RAG solution that makes sure only authorized users can access and interact with specific documents based on their roles, departments, and other relevant attributes. It combines OpenSearch Service and Amazon Cognito custom attributes to make a tag-based access control mechanism that makes it straightforward to manage at scale.

Achieve data resilience using Amazon OpenSearch Service disaster recovery with snapshot and restore

This post focuses on introducing an active-passive approach using a snapshot and restore strategy. The snapshot and restore strategy in OpenSearch Service involves creating point-in-time backups, known as snapshots, of your OpenSearch domain. These snapshots capture the entire state of the domain, including indexes, mappings, and settings. In the event of data loss or system failure, these snapshots will be used to restore the domain to a specific point in time. The post walks through the steps to set up this disaster recovery solution, including launching OpenSearch Service domains in primary and secondary regions, configuring snapshot repositories, restoring snapshots, and failing over/failing back between the regions.

Modernize your legacy databases with AWS data lakes, Part 3: Build a data lake processing layer

This is the final part of a three-part series where we show how to build a data lake on AWS using a modern data architecture. This post shows how to process data with Amazon Redshift Spectrum and create the gold (consumption) layer.

Simplify data ingestion from Amazon S3 to Amazon Redshift using auto-copy

Amazon Redshift is a fast, scalable, secure, and fully managed cloud data warehouse that makes it simple and cost-effective to analyze your data using standard SQL and your existing business intelligence (BI) tools. Tens of thousands of customers today rely on Amazon Redshift to analyze exabytes of data and run complex analytical queries, making it […]

How BMW streamlined data access using AWS Lake Formation fine-grained access control

This post explores how BMW implemented AWS Lake Formation’s fine-grained access control (FGAC) in the Cloud Data Hub and how this saves them up to 25% on compute and storage costs. By using AWS Lake Formation fine-grained access control capabilities, BMW has transparently implemented finer data access management within the Cloud Data Hub. The integration of Lake Formation has enabled data stewards to scope and grant granular access to specific subsets of data, reducing costly data duplication.

How to implement access control and auditing on Amazon Redshift using Immuta

This post is co-written with Matt Vogt from Immuta.  Organizations are looking for products that let them spend less time managing data and more time on core business functions. Data security is one of the key functions in managing a data warehouse. With Immuta integration with Amazon Redshift, user and data security operations are managed […]

Simplify your query performance diagnostics in Amazon Redshift with Query profiler

Amazon Redshift has introduced a new feature called the Query profiler. The Query profiler is a graphical tool that helps users analyze the components and performance of a query. This feature is part of the Amazon Redshift console and provides a visual and graphical representation of the query’s run order, execution plan, and various statistics. The Query profiler makes it easier for users to understand and troubleshoot their queries. In this post, we cover two common use cases for troubleshooting query performance. We show you step-by-step how to analyze and troubleshoot long-running queries using the Query profiler.