AWS Big Data Blog

Category: Amazon SageMaker

Use a linear learner algorithm in Amazon Redshift ML to solve regression and classification problems

Amazon Redshift is the fastest, most widely used, fully managed, and petabyte-scale cloud data warehouse. Tens of thousands of customers use Amazon Redshift to process exabytes of data every day to power their analytics workloads. Amazon Redshift ML, powered by Amazon SageMaker, makes it easy for SQL users such as data analysts, data scientists, and […]

Read More

Secure data movement across Amazon S3 and Amazon Redshift using role chaining and ASSUMEROLE

Data lakes use a ring of purpose-built data services around a central data lake. Data needs to move between these services and data stores easily and securely. The following are some examples of such services: Amazon Simple Storage Service (Amazon S3), which stores structured, unstructured, and semi-structured data Amazon Redshift, a fully managed, petabyte-scale data […]

Read More

Backtest trading strategies with Amazon Kinesis Data Streams long-term retention and Amazon SageMaker

Real-time insight is critical when it comes to building trading strategies. Any delay in data insight can cost lot of money to the traders. Often, you need to look at historical market trends to predict future trading pattern and make the right bid. More the historical data you analyze, better trading prediction you get. Back […]

Read More

Provide data reliability in Amazon Redshift at scale using Great Expectations library

Ensuring data reliability is one of the key objectives of maintaining data integrity and is crucial for building data trust across an organization. Data reliability means that the data is complete and accurate. It’s the catalyst for delivering trusted data analytics and insights. Incomplete or inaccurate data leads business leaders and data analysts to make […]

Read More

WeatherBug reduced ETL latency to 30 times faster using Amazon Redshift Spectrum

This post is co-written with data engineers, Anton Morozov and James Phillips, from Weatherbug. WeatherBug is a brand owned by GroundTruth, based in New York City, that provides location-based advertising solutions to businesses. WeatherBug consists of a mobile app reporting live and forecast data on hyperlocal weather to consumer users. The WeatherBug Data Engineering team […]

Read More

How MEDHOST’s cardiac risk prediction successfully leveraged AWS analytic services

MEDHOST has been providing products and services to healthcare facilities of all types and sizes for over 35 years. Today, more than 1,000 healthcare facilities are partnering with MEDHOST and enhancing their patient care and operational excellence with its integrated clinical and financial EHR solutions. MEDHOST also offers a comprehensive Emergency Department Information System with […]

Read More

How Imperva uses Amazon Athena for machine learning botnets detection

This is a guest post by Ori Nakar, Principal Engineer at Imperva. In their own words, “Imperva is a large cyber security company and an AWS Partner Network (APN) Advanced Technology Partner, who protects web applications and data assets. Imperva protects over 6,200 enterprises worldwide and many of them use Imperva Web Application Firewall (WAF) […]

Read More

Effective data lakes using AWS Lake Formation, Part 3: Using ACID transactions on governed tables

Data lakes on Amazon Simple Storage Service (Amazon S3) have become the default repository for all enterprise data and serve as common choice for a large number of users querying from a variety of analytics and ML tools. Often times you want to ingest data continuously into the data lake from multiple sources and query against the […]

Read More
Let’s look at PyDeequ’s main components, and how they relate to Deequ (shown in the following diagram)

Testing data quality at scale with PyDeequ

You generally write unit tests for your code, but do you also test your data? Incoming data quality can make or break your application. Incorrect, missing, or malformed data can have a large impact on production systems. Examples of data quality issues include the following: Missing values can lead to failures in production system that […]

Read More

Optimize Python ETL by extending Pandas with AWS Data Wrangler

Developing extract, transform, and load (ETL) data pipelines is one of the most time-consuming steps to keep data lakes, data warehouses, and databases up to date and ready to provide business insights. You can categorize these pipelines into distributed and non-distributed, and the choice of one or the other depends on the amount of data […]

Read More