AWS Big Data Blog

Category: Amazon Redshift*

Collect Data Statistics Up to 5x Faster by Analyzing Only Predicate Columns with Amazon Redshift

After loading new data into an Amazon Redshift cluster, statistics need to be re-computed to guarantee performant query plans. By learning which column statistics are actually being used by the customer’s workload and collecting statistics only on those columns, Amazon Redshift is able to significantly reduce the amount of time needed for table maintenance during data loading workflows.

Read More

From Data Lake to Data Warehouse: Enhancing Customer 360 with Amazon Redshift Spectrum

Achieving a 360o-view of your customer has become increasingly challenging as companies embrace omni-channel strategies, engaging customers across websites, mobile, call centers, social media, physical sites, and beyond. The promise of a web where online and physical worlds blend makes understanding your customers more challenging, but also more important. Businesses that are successful in this […]

Read More

Upsert into Amazon Redshift using AWS Glue and SneaQL

This is a guest post by Jeremy Winters and Ritu Mishra, Solution Architects at Full 360. In their own words, “Full 360 is a cloud first, cloud native integrator, and true believers in the cloud since inception in 2007, our focus has been on helping customers with their journey into the cloud. Our practice areas […]

Read More

Deploy a Data Warehouse Quickly with Amazon Redshift, Amazon RDS for PostgreSQL and Tableau Server

One of the benefits of a data warehouse environment using both Amazon Redshift and Amazon RDS for PostgreSQL is that you can leverage the advantages of each service. Amazon Redshift is a high performance, petabyte-scale data warehouse service optimized for the online analytical processing (OLAP) queries typical of analytic reporting and business intelligence applications. On […]

Read More