AWS Big Data Blog

Category: AWS Glue

Build a Data Lake Foundation with AWS Glue and Amazon S3

A data lake is an increasingly popular way to store and analyze data that addresses the challenges of dealing with massive volumes of heterogeneous data. A data lake allows organizations to store all their data—structured and unstructured—in one centralized repository. Because data can be stored as-is, there is no need to convert it to a predefined schema. This post walks you through the process of using AWS Glue to crawl your data on Amazon S3 and build a metadata store that can be used with other AWS offerings.

Read More

Unite Real-Time and Batch Analytics Using the Big Data Lambda Architecture, Without Servers!

In this post, I show you how you can use AWS services like AWS Glue to build a Lambda Architecture completely without servers. I use a practical demonstration to examine the tight integration between serverless services on AWS and create a robust data processing Lambda Architecture system.

Read More

Harmonize, Query, and Visualize Data from Various Providers using AWS Glue, Amazon Athena, and Amazon QuickSight

Have you ever been faced with many different data sources in different formats that need to be analyzed together to drive value and insights?  You need to be able to query, analyze, process, and visualize all your data as one canonical dataset, regardless of the data source or original format. In this post, I walk […]

Read More

Upsert into Amazon Redshift using AWS Glue and SneaQL

This is a guest post by Jeremy Winters and Ritu Mishra, Solution Architects at Full 360. In their own words, “Full 360 is a cloud first, cloud native integrator, and true believers in the cloud since inception in 2007, our focus has been on helping customers with their journey into the cloud. Our practice areas […]

Read More