Artificial Intelligence

Category: Artificial Intelligence

Model serving in Java with AWS Elastic Beanstalk made easy with Deep Java Library

Deploying your machine learning (ML) models to run on a REST endpoint has never been easier. Using AWS Elastic Beanstalk and Amazon Elastic Compute Cloud (Amazon EC2) to host your endpoint and Deep Java Library (DJL) to load your deep learning models for inference makes the model deployment process extremely easy to set up. Setting […]

We can improve the accuracy by retraining the model with more video files.

Building your own brand detection and visibility using Amazon SageMaker Ground Truth and Amazon Rekognition Custom Labels – Part 1: End-to-end solution

According to Gartner, 58% of marketing leaders believe brand is a critical driver of buyer behavior for prospects, and 65% believe it’s a critical driver of buyer behavior for existing customers. Companies spend huge amounts of money on advertisement to raise brand visibility and awareness. In fact, as per Gartner, CMO spends over 21% of […]

Model serving made easier with Deep Java Library and AWS Lambda

Developing and deploying a deep learning model involves many steps: gathering and cleansing data, designing the model, fine-tuning model parameters, evaluating the results, and going through it again until a desirable result is achieved. Then comes the final step: deploying the model. AWS Lambda is one of the most cost effective service that lets you run code without […]

The following diagram illustrates the main steps you need to complete in order to create and publish your custom SageMaker project template.

Multi-account model deployment with Amazon SageMaker Pipelines

Amazon SageMaker Pipelines is the first purpose-built CI/CD service for machine learning (ML). It helps you build, automate, manage, and scale end-to-end ML workflows and apply DevOps best practices of CI/CD to ML (also known as MLOps). Creating multiple accounts to organize all the resources of your organization is a good DevOps practice. A multi-account […]

Redacting PII from application log output with Amazon Comprehend

Amazon Comprehend is a natural language processing (NLP) service that uses machine learning (ML) to find insights and relationships in text. The service can extract people, places, sentiments, and topics in unstructured data. You can now use Amazon Comprehend ML capabilities to detect and redact personally identifiable information (PII) in application logs, customer emails, support […]

The following screenshot shows how the three components of SageMaker Pipelines can work together in an example SageMaker project.

Building, automating, managing, and scaling ML workflows using Amazon SageMaker Pipelines

March 2025: This post was reviewed and updated for accuracy. We have Amazon SageMaker Pipelines, the first purpose-built, easy-to-use continuous integration and continuous delivery (CI/CD) service for machine learning (ML). SageMaker Pipelines is a native workflow orchestration tool for building ML pipelines that take advantage of direct Amazon SageMaker integration. Three components improve the operational resilience and reproducibility of your […]

Labeling mixed-source, industrial datasets with Amazon SageMaker Ground Truth

Prior to using any kind of supervised machine learning (ML) algorithm, data has to be labeled. Amazon SageMaker Ground Truth simplifies and accelerates this task. Ground Truth uses pre-defined templates to assign labels that classify the content of images or videos or verify existing labels. Ground Truth allows you to define workflows for labeling various […]

The following diagram illustrates the architecture for our experiments.

Building predictive disease models using Amazon SageMaker with Amazon HealthLake normalized data

In this post, we walk you through the steps to build machine learning (ML) models in Amazon SageMaker with data stored in Amazon HealthLake using two example predictive disease models we trained on sample data using the MIMIC-III dataset. This dataset was developed by the MIT lab for Computational Physiology and consists of de-identified healthcare […]

Run the following code to trigger a recommendation workflow using the underlying Lambda function and Step Functions states:

Automating an Amazon Personalize solution using the AWS Step Functions Data Science SDK

Machine learning (ML)-based recommender systems aren’t a new concept across organizations such as retail, media and entertainment, and education, but developing such a system can be a resource-intensive task—from data labelling, training and inference, to scaling. You also need to apply continuous integration, continuous deployment, and continuous training to your ML model, or MLOps. The […]

The following image shows multiple vessel voyages of the same vessel in different colors.

Using machine learning to predict vessel time of arrival with Amazon SageMaker

According to the International Chamber of Shipping, 90% of world commerce happens at sea. Vessels are transporting every possible kind of commodity, including raw materials and semi-finished and finished goods, making ocean transportation a key component of the global supply chain. Manufacturers, retailers, and the end consumer are reliant on hundreds of thousands of ships […]