AWS Machine Learning Blog

Category: Amazon SageMaker

Creating a machine learning-powered REST API with Amazon API Gateway mapping templates and Amazon SageMaker

July 2022: Post was reviewed for accuracy. Amazon SageMaker enables organizations to build, train, and deploy machine learning models. Consumer-facing organizations can use it to enrich their customers’ experiences, for example, by making personalized product recommendations, or by automatically tailoring application behavior based on customers’ observed preferences. When building such applications, one key architectural consideration […]

Training batch reinforcement learning policies with Amazon SageMaker RL

Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning (ML) models at any scale. In addition to building ML models using more commonly used supervised and unsupervised learning techniques, you can also build reinforcement learning (RL) models using Amazon SageMaker RL. […]

Using DeepChem with Amazon SageMaker for virtual screening

Virtual screening is a computational methodology used in drug or materials discovery by searching a vast amount of molecules libraries to identify the structures that are most likely to show the target characteristics. It is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of […]

Simplify Machine Learning Inference on Kubernetes with Amazon SageMaker Operators

Amazon SageMaker Operators for Kubernetes allows you to augment your existing Kubernetes cluster with SageMaker hosted endpoints. Machine learning inferencing requires investment to create a reliable and efficient service. For an XGBoost model, developers have to create an application, such as through Flask that will load the model and then run the endpoint, which requires […]

Automating model retraining and deployment using the AWS Step Functions Data Science SDK for Amazon SageMaker

As machine learning (ML) becomes a larger part of companies’ core business, there is a greater emphasis on reducing the time from model creation to deployment. In November of 2019, AWS released the AWS Step Functions Data Science SDK for Amazon SageMaker, an open-source SDK that allows developers to create Step Functions-based machine learning workflows […]

Lowering total cost of ownership for machine learning and increasing productivity with Amazon SageMaker

You have many choices for building, training, and deploying machine learning (ML) models. Weighing the financial considerations of different cloud solutions requires detailed analysis. You must consider the infrastructure, operational, and security costs for each step of the ML workflow, as well as the size and expertise of your data science teams. The Total Cost […]

Flagging suspicious healthcare claims with Amazon SageMaker

The National Health Care Anti-Fraud Association (NHCAA) estimates that healthcare fraud costs the nation approximately $68 billion annually—3% of the nation’s $2.26 trillion in healthcare spending. This is a conservative estimate; other estimates range as high as 10% of annual healthcare expenditure, or $230 billion. Healthcare fraud inevitably results in higher premiums and out-of-pocket expenses […]

Identifying worker labeling efficiency using Amazon SageMaker Ground Truth

A critical success factor in machine learning (ML) is the cleanliness and accuracy of training datesets. Training with mislabeled or inaccurate data can lead to a poorly performing model. But how can you easily determine if the  labeling team is  accurately labeling data? One way is to manually sift through the results one worker at […]

Millennium Management: Secure machine learning using Amazon SageMaker

This is a guest post from Millennium Management. In their own words, “Millennium Management is a global investment management firm, established in 1989, with over 2,900 employees and $39.2 billion in assets under management as of August 2, 2019.” Millennium Management is comprised of a large number of specialized trading teams across the United States, […]

Maximizing NLP model performance with automatic model tuning in Amazon SageMaker

The field of Natural Language Processing (NLP) has had many remarkable breakthroughs in the past two years. Advanced deep learning models are raising the state-of-the-art performance standards for NLP tasks. To benefit from newly published NLP models, the best approach is to apply a pre-trained language model to a new dataset and fine-tune it for […]