AWS Machine Learning Blog

Category: Amazon SageMaker

Model dynamism Support in Amazon SageMaker Neo

Amazon SageMaker Neo was launched at AWS re:Invent 2018. It made notable performance improvement on models with statically known input and output data shapes, typically image classification models. These models are usually composed of a stack of blocks that contain compute-intensive operators, such as convolution and matrix multiplication. Neo applies a series of optimizations to […]

Read More

Amazon SageMaker Neo makes it easier to get faster inference for more ML models with NVIDIA TensorRT

Amazon SageMaker Neo now uses the NVIDIA TensorRT acceleration library to increase the speedup of machine learning (ML) models on NVIDIA Jetson devices at the edge and AWS g4dn and p3 instances in the AWS Cloud. Neo compiles models from TensorFlow, TFLite, MXNet, PyTorch, ONNX, and DarkNet to make optimal use of NVIDIA GPUs, providing […]

Read More

Optimizing ML models for iOS and MacOS devices with Amazon SageMaker Neo and Core ML

Core ML is a machine learning (ML) model format created and supported by Apple that compiles, deploys, and runs on Apple devices. Developers who train their models in popular frameworks such as TensorFlow and PyTorch convert models to Core ML format to deploy them on Apple devices. AWS has automated the model conversion to Core […]

Read More

Speeding up TensorFlow, MXNet, and PyTorch inference with Amazon SageMaker Neo

Various machine learning (ML) optimizations are possible at every stage of the flow during or after training. Model compiling is one optimization that creates a more efficient implementation of a trained model. In 2018, we launched Amazon SageMaker Neo to compile machine learning models for many frameworks and many platforms. We created the ML compiler […]

Read More

Predicting soccer goals in near real time using computer vision

In a soccer game, fans get excited seeing a player sprint down the sideline during a counterattack or when a team is controlling the ball in the 18-yard box because those actions could lead to goals. However, it is difficult for human eyes to fully capture such fast movements, let alone predict goals. With machine […]

Read More

How Thomson Reuters accelerated research and development of natural language processing solutions with Amazon SageMaker

This post is co-written by John Duprey and Filippo Pompili from Thomson Reuters. Thomson Reuters (TR) is one of the world’s most trusted providers of answers, helping professionals make confident decisions and run better businesses. Teams of experts from TR bring together information, innovation, and confident insights to unravel complex situations, and their worldwide network […]

Read More

Automated model refresh with streaming data

In today’s world, being able to quickly bring on-premises machine learning (ML) models to the cloud is an integral part of any cloud migration journey. This post provides a step-by-step guide for launching a solution that facilitates the migration journey for large-scale ML workflows. This solution was developed by the Amazon ML Solutions Lab for […]

Read More

Performing simulations at scale with Amazon SageMaker Processing and R on RStudio

Statistical analysis and simulation are prevalent techniques employed in various fields, such as healthcare, life science, and financial services. The open-source statistical language R and its rich ecosystem with more than 16,000 packages has been a top choice for statisticians, quant analysts, data scientists, and machine learning (ML) engineers. RStudio is an integrated development environment […]

Read More

Introducing AWS Panorama – Improve your operations with computer vision at the edge

Yesterday at AWS re:Invent 2020, we announced AWS Panorama, a new machine learning (ML) Appliance and SDK, which allows organizations to bring computer vision (CV) to their on-premises cameras to make automated predictions with high accuracy and low latency. In this post, you learn how customers across a range of industries are using AWS Panorama […]

Read More

Introducing the AWS Panorama Device SDK: Scaling computer vision at the edge with AWS Panorama-enabled devices

Yesterday, at AWS re:Invent, we announced AWS Panorama, a new Appliance and Device SDK that allows organizations to bring computer vision to their on-premises cameras to make automated predictions with high accuracy and low latency. With AWS Panorama, companies can use compute power at the edge (without requiring video streamed to the cloud) to improve […]

Read More