AWS Machine Learning Blog
Category: Intermediate (200)
Automate caption creation and search for images at enterprise scale using generative AI and Amazon Kendra
Amazon Kendra is an intelligent search service powered by machine learning (ML). Amazon Kendra reimagines search for your websites and applications so your employees and customers can easily find the content they are looking for, even when it’s scattered across multiple locations and content repositories within your organization. Amazon Kendra supports a variety of document […]
Flag harmful language in spoken conversations with Amazon Transcribe Toxicity Detection
The increase in online social activities such as social networking or online gaming is often riddled with hostile or aggressive behavior that can lead to unsolicited manifestations of hate speech, cyberbullying, or harassment. For example, many online gaming communities offer voice chat functionality to facilitate communication among their users. Although voice chat often supports friendly […]
Enel automates large-scale power grid asset management and anomaly detection using Amazon SageMaker
This is a guest post by Mario Namtao Shianti Larcher, Head of Computer Vision at Enel. Enel, which started as Italy’s national entity for electricity, is today a multinational company present in 32 countries and the first private network operator in the world with 74 million users. It is also recognized as the first renewables […]
Integrate Amazon SageMaker Model Cards with the model registry
Amazon SageMaker Model Cards enable you to standardize how models are documented, thereby achieving visibility into the lifecycle of a model, from designing, building, training, and evaluation. Model cards are intended to be a single source of truth for business and technical metadata about the model that can reliably be used for auditing and documentation […]
Enhance Amazon Lex with conversational FAQ features using LLMs
Amazon Lex is a service that allows you to quickly and easily build conversational bots (“chatbots”), virtual agents, and interactive voice response (IVR) systems for applications such as Amazon Connect. Artificial intelligence (AI) and machine learning (ML) have been a focus for Amazon for over 20 years, and many of the capabilities that customers use […]
Enhance Amazon Lex with LLMs and improve the FAQ experience using URL ingestion
In today’s digital world, most consumers would rather find answers to their customer service questions on their own rather than taking the time to reach out to businesses and/or service providers. This blog post explores an innovative solution to build a question and answer chatbot in Amazon Lex that uses existing FAQs from your website. […]
Highlight text as it’s being spoken using Amazon Polly
Amazon Polly is a service that turns text into lifelike speech. It enables the development of a whole class of applications that can convert text into speech in multiple languages. This service can be used by chatbots, audio books, and other text-to-speech applications in conjunction with other AWS AI or machine learning (ML) services. For […]
Predict vehicle fleet failure probability using Amazon SageMaker Jumpstart
Predictive maintenance is critical in automotive industries because it can avoid out-of-the-blue mechanical failures and reactive maintenance activities that disrupt operations. By predicting vehicle failures and scheduling maintenance and repairs, you’ll reduce downtime, improve safety, and boost productivity levels. What if we could apply deep learning techniques to common areas that drive vehicle failures, unplanned […]
Auto-labeling module for deep learning-based Advanced Driver Assistance Systems on AWS
In computer vision (CV), adding tags to identify objects of interest or bounding boxes to locate the objects is called labeling. It’s one of the prerequisite tasks to prepare training data to train a deep learning model. Hundreds of thousands of work hours are spent generating high-quality labels from images and videos for various CV […]
Recommend and dynamically filter items based on user context in Amazon Personalize
Organizations are continuously investing time and effort in developing intelligent recommendation solutions to serve customized and relevant content to their users. The goals can be many: transform the user experience, generate meaningful interaction, and drive content consumption. Some of these solutions use common machine learning (ML) models built on historical interaction patterns, user demographic attributes, […]