Amazon Web Services ブログ
AWS X-Ray で AWS Lambda をサポート
本日、AWS X-Ray で AWS Lambda サポート の一般提供開始を発表しました。Jeff が GA で投稿したブログですでにご存知の方もいるかと思いますが (「Jeff の GA POST (Jeff’s GA POST)」)、X-Ray は分散アプリケーションの実行やパフォーマンス動作を分析する AWS サービスです。
複数の独立したコンポーネントを異なるサービスで実行するマイクロサービスベースのアプリケーションでは、従来の問題をデバッグする方法がうまく機能しません。アプリケーションでレイテンシーを分けることで、X-Ray はエラーや処理の低下、タイムアウトを迅速に診断することができます。それでは、シンプルな Lambda ベースのアプリケーションを構築し分析する方法をお見せしながら、独自のアプリケーションで X-Ray を使用する方法をご説明します。
今すぐ開始したい場合は、関数の設定ページで追跡を有効にすれば既存の Lambda 関数で簡単に X-Ray を使い始めることができます。
または AWS Command Line Interface (CLI) で関数の tracing-config
を更新してください (必ず --function-name
も忘れずに):
$ aws lambda update-function-configuration --tracing-config '{"Mode": "Active"}'
トレースモードをオンにすると、Lambda は関数を追跡しようとします (アップストリームサービスによって追跡されないよう明示的に指示されていない限り)。オフの状態では、アップストリームサービスによって追跡するよう明示的に指示されている場合のみ関数が追跡されます。トレーシングモードをオンにすると追跡の生成が始まり、アプリケーションとその間のコネクション (辺) におけるリソースのビジュアル表現が見られるようになります。
X-Ray デーモンは Lambda 関数のいくつかのリソースを使用することがあります。メモリ制限に近付いている場合、Lambda はメモリ不足エラーを回避するために X-Ray デーモンを終了しようとします。では、複数のサービスを使用する簡単なアプリケーションを構築して新しい統合を試してみましょう。
20 代が持つスマートフォンということで、 pictures 自分のスマホは自撮りの写真でいっぱいです (10000+!)。ということで、この機会に写真をすべて分析してみることにしました。Java 8 ランタイムを使用して、Amazon Simple Storage Service (S3) バケットにアップロードした新しい画像に反応するシンプルな Lambda 関数を作成します。写真には Amazon Rekognition を使用し、検出したラベルを Amazon DynamoDB に保存します。
まず、X-Ray のボキャブラリーをいくつか確認しておきましょう: サブセグメント、セグメント、トレースです。 分かりましたか? サービスグラフを生成するために X-Ray が処理するトレースをサブセグメントとセグメントが構成している、ということを覚えておけば X-Ray を理解しやすいと思います。
サービスグラフは見やすいビジュアル表現を提供します (様々なリクエストへの応答を別の色で表示)。アプリケーションロジックを実行しているコンピューティングリソースは、実行している作業に関するデータをセグメント形式で送信します。サブセグメントを作成すれば、データに関する注釈を追加したり、コードのタイミングをより細かく設定することができます。アプリケーションを経由するリクエストのパスは、トレースを使用して追跡されます。トレースでは、1 つのリクエストで生成されたセグメントをすべて収集します。つまり、S3 からの Lambda イベントを DynamoDB まで簡単に追跡することができるので、エラーやレイテンシーがどこで発生しているか把握することができます。
では、S3 バケットを作成してみましょう。このバケットの名称は selfies-bucket
にします。DynamoDB テーブルは selfies-table
、あとは Lambda 関数です。ObjectCreated で S3 バケットの Lambda 関数にトリガーを追加します。Lambda 関数コードは実にシンプルです。こちらでご覧ください。コードの変更なしに、JAR の aws-xray-sdk と aws-xray-sdk-recorder-aws-sdk-instrumentor パッケージを含むことで Java 関数で X-Ray を有効にすることができます。アップロードした写真をいくつかトリガーして X-Ray のトレースを見てみましょう。
データが取れました!トレースの 1 つをクリックすれば呼び出しの詳細情報を見ることができます。
最初の AWS::Lambda
セグメントでは、関数のドウェル時間、実行待機時間、試行された実行数を見ることができます。次の AWS::Lambda::Function
セグメントにはいくつかのサブセグメントが見られます。
- 初期設定のサブセグメントには関数ハンドラが実行する前の時間すべてが含まれます。
- アウトバウンドサービスコール
- 任意のカスタムセグメント (簡単に追加可能)
どうやら DyamoDB 側で問題が発生しているようです。エラーアイコンをクリックすれば、より詳しい情報と例外のスタックトレースを見ることができます。書き込みキャパシティーユニットが不足しているので、DynamoDB に調整されたことが分かります。数回のクリックまたは簡単な API コールで追加できます。そうするとサービスマップに表示される緑が増えていきます。
X-Ray SDK は X-Ray へのデータ放出をとても簡単にしますが、トークに X-Ray デーモンを使用する必要はありません。Python を使用している場合は fleece という rackspace からライブラリを確認できます。X-Ray サービスは興味深いものをたくさん備えています。詳細については「未定義 ()」ドキュメントをご覧ください。
個人的に @awscloudninja ボットで使用していますが、これはとても優れていると思います。ただし、これは公式のライブラリではなく AWS がサポートしていない点にご留意ください。時間節約、デバッグや操作に対する労力においても便利なので、個人的には今後のプロジェクトすべてで X-Ray を使う予定です。皆さんがどのように構築するのか楽しみにしています。使えそうなトリックやハックを見つけたら、ぜひお知らせください!
– Randall