AWS Big Data Blog

Tag: Amazon EMR

How SmartNews Built a Lambda Architecture on AWS to Analyze Customer Behavior and Recommend Content

This is a guest post by Takumi Sakamoto, a software engineer at SmartNews. SmartNews in their own words: “SmartNews is a machine learning-based news discovery app that delivers the very best stories on the Web for more than 18 million users worldwide.” Data processing is one of the key technologies for SmartNews. Every team’s workload […]

Read More

Supercharge SQL on Your Data in Apache HBase with Apache Phoenix

With today’s launch of Amazon EMR release 4.7, you can now create clusters with Apache Phoenix 4.7.0 for low-latency SQL and OLTP workloads. Phoenix uses Apache HBase as its backing store (HBase 1.2.1 is included on Amazon EMR release 4.7.0), using HBase scan operations and coprocessors for fast performance. Additionally, you can map Phoenix tables […]

Read More

Using Spark SQL for ETL

Ben Snively is a Solutions Architect with AWS With big data, you deal with many different formats and large volumes of data. SQL-style queries have been around for nearly four decades. Many systems support SQL-style syntax on top of the data layers, and the Hadoop/Spark ecosystem is no exception. This allows companies to try new […]

Read More

Using Python 3.4 on EMR Spark Applications

Bruno Faria is a Big Data Support Engineer for Amazon Web Services Many data scientists choose Python when developing on Spark. With last month’s Amazon EMR release 4.6, we’ve made it even easier to use Python: Python 3.4 is installed on your EMR cluster by default. You’ll still find Python 2.6 and 2.7 on your […]

Read More