Artificial Intelligence
Interactively fine-tune Falcon-40B and other LLMs on Amazon SageMaker Studio notebooks using QLoRA
Fine-tuning large language models (LLMs) allows you to adjust open-source foundational models to achieve improved performance on your domain-specific tasks. In this post, we discuss the advantages of using Amazon SageMaker notebooks to fine-tune state-of-the-art open-source models. We utilize Hugging Face’s parameter-efficient fine-tuning (PEFT) library and quantization techniques through bitsandbytes to support interactive fine-tuning of […]
Organize machine learning development using shared spaces in SageMaker Studio for real-time collaboration
Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). It provides a single, web-based visual interface where you can perform all ML development steps, including preparing data and building, training, and deploying models. Within an Amazon SageMaker Domain, users can provision a personal Amazon SageMaker Studio IDE application, which […]
Separate lines of business or teams with multiple Amazon SageMaker domains
Amazon SageMaker Studio is a fully integrated development environment (IDE) for machine learning (ML) that enables data scientists and developers to perform every step of the ML workflow, from preparing data to building, training, tuning, and deploying models. To access SageMaker Studio, Amazon SageMaker Canvas, or other Amazon ML environments like RStudio on Amazon SageMaker, […]
Operationalize your Amazon SageMaker Studio notebooks as scheduled notebook jobs
Amazon SageMaker Studio provides a fully managed solution for data scientists to interactively build, train, and deploy machine learning (ML) models. In addition to the interactive ML experience, data workers also seek solutions to run notebooks as ephemeral jobs without the need to refactor code as Python modules or learn DevOps tools and best practices […]
Set up enterprise-level cost allocation for ML environments and workloads using resource tagging in Amazon SageMaker
As businesses and IT leaders look to accelerate the adoption of machine learning (ML), there is a growing need to understand spend and cost allocation for your ML environment to meet enterprise requirements. Without proper cost management and governance, your ML spend may lead to surprises in your monthly AWS bill. Amazon SageMaker is a […]
Prepare data at scale in Amazon SageMaker Studio using serverless AWS Glue interactive sessions
Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). It provides a single, web-based visual interface where you can perform all ML development steps, including preparing data and building, training, and deploying models. AWS Glue is a serverless data integration service that makes it easy to discover, prepare, and […]
Amazon SageMaker Studio and SageMaker Notebook Instance now come with JupyterLab 3 notebooks to boost developer productivity
Amazon SageMaker comes with two options to spin up fully managed notebooks for exploring data and building machine learning (ML) models. The first option is fast start, collaborative notebooks accessible within Amazon SageMaker Studio – a fully integrated development environment (IDE) for machine learning. You can quickly launch notebooks in Studio, easily dial up or […]
Building, automating, managing, and scaling ML workflows using Amazon SageMaker Pipelines
March 2025: This post was reviewed and updated for accuracy. We have Amazon SageMaker Pipelines, the first purpose-built, easy-to-use continuous integration and continuous delivery (CI/CD) service for machine learning (ML). SageMaker Pipelines is a native workflow orchestration tool for building ML pipelines that take advantage of direct Amazon SageMaker integration. Three components improve the operational resilience and reproducibility of your […]







