AWS Machine Learning Blog

Category: AWS Service Catalog

Improve your data science workflow with a multi-branch training MLOps pipeline using AWS

In this post, you will learn how to create a multi-branch training MLOps continuous integration and continuous delivery (CI/CD) pipeline using AWS CodePipeline and AWS CodeCommit, in addition to Jenkins and GitHub. I discuss the concept of experiment branches, where data scientists can work in parallel and eventually merge their experiment back into the main […]

Read More

Create Amazon SageMaker projects with image building CI/CD pipelines

Amazon SageMaker projects are AWS Service Catalog provisioned products that enable you to easily create end-to-end machine learning (ML) solutions. SageMaker projects give organizations the ability to use templates that bootstrap ML solutions for your users to speed up the start time for ML development. You can now use SageMaker projects to manage custom dependencies […]

Read More

Secure multi-account model deployment with Amazon SageMaker: Part 2

In Part 1 of this series of posts, we offered step-by-step guidance for using Amazon SageMaker, SageMaker projects and Amazon SageMaker Pipelines, and AWS services such as Amazon Virtual Private Cloud (Amazon VPC), AWS CloudFormation, AWS Key Management Service (AWS KMS), and AWS Identity and Access Management (IAM) to implement secure architectures for multi-account enterprise […]

Read More

Secure multi-account model deployment with Amazon SageMaker: Part 1

Amazon SageMaker Studio is a web-based, integrated development environment (IDE) for machine learning (ML) that lets you build, train, debug, deploy, and monitor your ML models. Although Studio provides all the tools you need to take your models from experimentation to production, you need a robust and secure model deployment process. This process must fulfill […]

Read More

Automate a centralized deployment of Amazon SageMaker Studio with AWS Service Catalog

This post outlines the best practices for provisioning Amazon SageMaker Studio for data science teams and provides reference architectures and AWS CloudFormation templates to help you get started. We use AWS Service Catalog to provision a Studio domain and users. The AWS Service Catalog allows you to provision these centrally without requiring each user to […]

Read More
The following diagram is the architecture for the secure environment developed in this workshop.

Building secure machine learning environments with Amazon SageMaker

As businesses and IT leaders look to accelerate the adoption of machine learning (ML) and artificial intelligence (AI), there is a growing need to understand how to build secure and compliant ML environments that meet enterprise requirements. One major challenge you may face is integrating ML workflows into existing IT and business work streams. A […]

Read More
The following screenshot shows how the three components of SageMaker Pipelines can work together in an example SageMaker project.

Building, automating, managing, and scaling ML workflows using Amazon SageMaker Pipelines

We recently announced Amazon SageMaker Pipelines, the first purpose-built, easy-to-use continuous integration and continuous delivery (CI/CD) service for machine learning (ML). SageMaker Pipelines is a native workflow orchestration tool for building ML pipelines that take advantage of direct Amazon SageMaker integration. Three components improve the operational resilience and reproducibility of your ML workflows: pipelines, model […]

Read More