AWS Machine Learning Blog
Category: AWS CodeCommit
Build custom code libraries for your Amazon SageMaker Data Wrangler Flows using AWS Code Commit
As organizations grow in size and scale, the complexities of running workloads increase, and the need to develop and operationalize processes and workflows becomes critical. Therefore, organizations have adopted technology best practices, including microservice architecture, MLOps, DevOps, and more, to improve delivery time, reduce defects, and increase employee productivity. This post introduces a best practice […]
Improve your data science workflow with a multi-branch training MLOps pipeline using AWS
In this post, you will learn how to create a multi-branch training MLOps continuous integration and continuous delivery (CI/CD) pipeline using AWS CodePipeline and AWS CodeCommit, in addition to Jenkins and GitHub. I discuss the concept of experiment branches, where data scientists can work in parallel and eventually merge their experiment back into the main […]