AWS Machine Learning Blog

Category: Amazon Elastic Inference

Running Java-based deep learning with MXNet and Amazon Elastic Inference

The new release of MXNet 1.4 for Amazon Elastic Inference now includes Java and Scala support. Apache MXNet is an open source deep learning framework used to build, train, and deploy deep neural networks. Amazon Elastic Inference (EI) is a service that allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Amazon SageMaker […]

Read More

Launch EI accelerators in minutes with the Amazon Elastic Inference setup tool for EC2

The Amazon Elastic Inference (EI) setup tool is a Python script that enables you to quickly get started with EI. Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Amazon SageMaker instances to reduce the cost of running deep learning inference by up to 75 percent. If you are using EI for the […]

Read More

Reducing deep learning inference cost with MXNet and Amazon Elastic Inference

Amazon Elastic Inference (Amazon EI) is a service that allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Amazon SageMaker instances. MXNet has supported Amazon EI since its initial release at AWS re:Invent 2018. In this blog post, we’ll explore the cost and performance benefits of using Amazon EI with MXNet. We’ll walk […]

Read More

Model serving with Amazon Elastic Inference

Amazon Elastic Inference (EI) is a service that allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Amazon SageMaker instances. EI reduces the cost of running deep learning inference by up to 75%. Model Server for Apache MXNet (MMS) enables deployment of MXNet- and ONNX-based models for inference at scale. In this blog […]

Read More