AWS Machine Learning Blog

Category: Compute

Build and deploy a scalable machine learning system on Kubernetes with Kubeflow on AWS

In this post, we demonstrate Kubeflow on AWS (an AWS-specific distribution of Kubeflow) and the value it adds over open-source Kubeflow through the integration of highly optimized, cloud-native, enterprise-ready AWS services. Kubeflow is the open-source machine learning (ML) platform dedicated to making deployments of ML workflows on Kubernetes simple, portable and scalable. Kubeflow provides many […]

Read More

Receive notifications for image analysis with Amazon Rekognition Custom Labels and analyze predictions

Amazon Rekognition Custom Labels is a fully managed computer vision service that allows developers to build custom models to classify and identify objects in images that are specific and unique to your business. Rekognition Custom Labels doesn’t require you to have any prior computer vision expertise. You can get started by simply uploading tens of […]

Read More

Evolution of Cresta’s machine learning architecture: Migration to AWS and PyTorch

Cresta Intelligence, a California-based AI startup, makes businesses radically more productive by using Expertise AI to help sales and service teams unlock their full potential. Cresta is bringing together world-renowned AI thought-leaders, engineers, and investors to create a real-time coaching and management solution that transforms sales and increases service productivity, weeks after application deployment. Cresta […]

Read More

Machine learning inference at scale using AWS serverless

With the growing adoption of Machine Learning (ML) across industries, there is an increasing demand for faster and easier ways to run ML inference at scale. ML use cases, such as manufacturing defect detection, demand forecasting, fraud surveillance, and many others, involve tens or thousands of datasets, including images, videos, files, documents, and other artifacts. […]

Read More

Run AlphaFold v2.0 on Amazon EC2

After the article in Nature about the open-source of AlphaFold v2.0 on GitHub by DeepMind, many in the scientific and research community have wanted to try out DeepMind’s AlphaFold implementation firsthand. With compute resources through Amazon Elastic Compute Cloud (Amazon EC2) with Nvidia GPU, you can quickly get AlphaFold running and try it out yourself. […]

Read More

Serve 3,000 deep learning models on Amazon EKS with AWS Inferentia for under $50 an hour

More customers are finding the need to build larger, scalable, and more cost-effective machine learning (ML) inference pipelines in the cloud. Outside of these base prerequisites, the requirements of ML inference pipelines in production vary based on the business use case. A typical inference architecture for applications like recommendation engines, sentiment analysis, and ad ranking […]

Read More

Deploy multiple machine learning models for inference on AWS Lambda and Amazon EFS

You can deploy machine learning (ML) models for real-time inference with large libraries or pre-trained models. Common use cases include sentiment analysis, image classification, and search applications. These ML jobs typically vary in duration and require instant scaling to meet peak demand. You want to process latency-sensitive inference requests and pay only for what you […]

Read More

Schedule an Amazon SageMaker Data Wrangler flow to process new data periodically using AWS Lambda functions

Data scientists can spend up to 80% of their time preparing data for machine learning (ML) projects. This preparation process is largely undifferentiated and tedious work, and can involve multiple programming APIs and custom libraries. Announced at AWS re:Invent 2020, Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare data for […]

Read More

Use a SageMaker Pipeline Lambda step for lightweight model deployments

With Amazon SageMaker Pipelines, you can create, automate, and manage end-to-end machine learning (ML) workflows at scale. SageMaker Projects build on SageMaker Pipelines by providing several MLOps templates that automate model building and deployment pipelines using continuous integration and continuous delivery (CI/CD). To help you get started, SageMaker Pipelines provides many predefined step types, such […]

Read More

Machine Learning at the Edge with AWS Outposts and Amazon SageMaker

As customers continue to come up with new use-cases for machine learning, data gravity is as important as ever. Where latency and network connectivity is not an issue, generating data in one location (such as a manufacturing facility) and sending it to the cloud for inference is acceptable for some use-cases. With other critical use-cases, […]

Read More