AWS Machine Learning Blog

Category: Compute

Build, test, and deploy your Amazon Sagemaker inference models to AWS Lambda

Amazon SageMaker is a fully managed platform that enables developers and data scientists to quickly and easily build, train, and deploy machine learning (ML) models at any scale. When you deploy an ML model, Amazon SageMaker leverages ML hosting instances to host the model and provides an API endpoint to provide inferences. It may also […]

Read More

Optimizing TensorFlow model serving with Kubernetes and Amazon Elastic Inference

This post offers a dive deep into how to use Amazon Elastic Inference with Amazon Elastic Kubernetes Service. When you combine Elastic Inference with EKS, you can run low-cost, scalable inference workloads with your preferred container orchestration system. Elastic Inference is an increasingly popular way to run low-cost inference workloads on AWS. It allows you […]

Read More

Turning unstructured text into insights with Bewgle powered by AWS

Bewgle is an SAP.iO, Techstars-funded company that uses AWS services to surface insights from user-generated text and audio streams. Bewgle generates insights to help product managers to increase customer satisfaction and engagement with their various products—beauty, electronics, or anything in between.  By listening to the voices of their customers with the help of Bewgle powered […]

Read More

Train Deep Learning Models on GPUs using Amazon EC2 Spot Instances

You’ve collected your datasets, designed your deep neural network architecture, and coded your training routines. You are now ready to run training on a large dataset for multiple epochs on a powerful GPU instance. You learn that the Amazon EC2 P3 instances with NVIDIA Tesla V100 GPUs are ideal for compute-intensive deep learning training jobs, […]

Read More

Build a serverless Twitter reader using AWS Fargate

In a previous post, Ben Snively and Viral Desai showed us how to build a social media dashboard using serverless technology. The social media dashboard reads tweets with the #AWS hashtag, uses machine learning based services to do translation, and natural language processing (NLP) to determine topics, entities, and sentiment analysis. Finally, it aggregates this […]

Read More

Scalable multi-node deep learning training using GPUs in the AWS Cloud 

A key barrier to the wider adoption of deep neural networks on industrial-size datasets is the time and resources required to train them. AlexNet, which won the 2012 ImageNet Large Scale Visual Recognition Competition (ILSVRC) and kicked off the current boom in deep neural networks, took nearly a week to train across the 1.2-million-image, 1000-category […]

Read More

Toyota Research Institute accelerates safe automated driving with deep learning at a global scale on AWS

Vehicles with self-driving technology can bring many benefits to society. One of the top priorities at Toyota Research Institute (TRI) is to apply the latest advancements in artificial intelligence (AI) to help Toyota produce cars that are safer, more accessible, and more environmentally friendly. To help TRI achieve their goals, they turned to deep learning […]

Read More

Build text analytics solutions with Amazon Comprehend and Amazon Relational Database Service

In this blog post, we will show you how to get started building rich text analytics views from your database, without having to learn anything about machine learning for natural language processing models. We’ll do this by leveraging Amazon Comprehend, paired with Amazon Aurora-MySQL and AWS Lambda.

Read More

Build automatic analysis of body language to gauge attention and engagement using Amazon Kinesis Video Streams and Amazon AI Services

This is a guest blog post by Ned T. Sahin, PhD (Brain Power LLC and Harvard University), Runpeng Liu (Brain Power LLC and MIT), Joseph Salisbury, PhD (Brain Power LLC), and Lillian Bu (Brain Power LLC and MIT).  Producers of content (from ads to games to teaching materials) usually judge the success of their content […]

Read More

Build an online compound solubility prediction workflow with AWS Batch and Amazon SageMaker

Machine learning (ML) methods for the field of computational chemistry are growing at an accelerated rate. Easy access to open-source solvers (such as TensorFlow and Apache MXNet), toolkits (such as RDKit cheminformatics software), and open-scientific initiatives (such as DeepChem) makes it easy to use these frameworks in daily research. In the field of chemical informatics, many […]

Read More