Artificial Intelligence
Category: Amazon Machine Learning
Use integrated explainability tools and improve model quality using Amazon SageMaker Autopilot
Whether you are developing a machine learning (ML) model for reducing operating cost, improving efficiency, or improving customer satisfaction, there are no perfect solutions when it comes to producing an effective model. From an ML development perspective, data scientists typically go through stages of data exploration, feature engineering, model development, and model training and tuning […]
Bushfire mitigation through Machine Learning with AusNet and AWS
Eastern Australia is among the most fire-prone regions in the world. Although bushfires are a regular occurrence in Australia, the 2019–2020 bushfire crisis set ablaze over 17 million hectares of land (larger than the size of England), costing the Australian economy more than $100 billion between property, infrastructure, social, and environmental costs. With increasingly extreme […]
Bring your own data to classify news with Amazon SageMaker and Hugging Face
The fields of natural language processing (NLP), natural language understanding (NLU), and related branches of machine learning (ML) for text analysis have rapidly evolved to address use cases involving text classification, summarization, translation, and more. State-of-the art, general-purpose architectures such as transformers are making this evolution possible. Looking at text classification in particular, a supervised […]
Use AutoGluon-Tabular in AWS Marketplace
AutoGluon-Tabular is an open-source AutoML framework that requires only a single line of Python to train highly accurate machine learning (ML) models on an unprocessed tabular dataset. In this post, we walk you through a way of using AutoGluon-Tabular as a code-free AWS Marketplace product. We use this process to train and deploy a highly […]
Process and add additional file formats to your Amazon Kendra Index
If you have a corpus of internal documents that you frequently search through, Amazon Kendra can help you find your content faster and easier. These documents can be in different locations and repositories, and can be structured or unstructured. Amazon Kendra is a fully managed service backed by machine learning (ML). You don’t need to […]
Automate model retraining with Amazon SageMaker Pipelines when drift is detected
Training your machine learning (ML) model and serving predictions is usually not the end of the ML project. The accuracy of ML models can deteriorate over time, a phenomenon known as model drift. Many factors can cause model drift, such as changes in model features. The accuracy of ML models can also be affected by […]
Get started with RStudio on Amazon SageMaker
Today, we’re excited to announce RStudio on Amazon SageMaker, the industry’s first fully-managed RStudio integrated development environment (IDE) in the cloud. You can now bring the current RStudio licenses and migrate your self-managed RStudio environments to Amazon SageMaker in a few simple steps. RStudio is one of the most popular IDEs among R developers for […]
Automated claims processing at Xactware with machine learning on AWS
This blog post was co-authored, and includes an introduction, by Aaron Brunko, Senior Vice President, Claims Product at Xactware. Property insurance claims involving the valuation and replacement of personal belongings can be a painful process for everyone involved after a loss. From catastrophic events such as hurricanes, tornados, and wildfires, to theft and vandalism, claim […]
Build a shelf monitoring application using AWS Panorama
Out-of-stock (OOS) is an essential metric tracked across the retail industry. Brick-and-mortar retailers seek to reduce their costs associated with OOS items, while simultaneously increasing shopper satisfaction without inventory surplus. A product can be OOS in three main ways: Distribution OOS, Store OOS, and Shelf OOS. This post focuses on Shelf OOS. Shelf OOS occurs […]
Prevent fake account sign-ups in real time with AI using Amazon Fraud Detector
Implementing an effective fraud prevention system is one of the top priorities for businesses that operate online web or mobile platforms. Businesses report millions of dollars of lost revenue each year due to fraud. Platform abuse and fraud prevention largely remain reactive, and is achieved by studying the profile behavior and transaction history of a […]








