Artificial Intelligence

Category: Generative AI

How Thomson Reuters Labs achieved AI/ML innovation at pace with AWS MLOps services

How Thomson Reuters Labs achieved AI/ML innovation at pace with AWS MLOps services

In this post, we show you how Thomson Reuters Labs (TR Labs) was able to develop an efficient, flexible, and powerful MLOps process by adopting a standardized MLOps framework that uses AWS SageMaker, SageMaker Experiments, SageMaker Model Registry, and SageMaker Pipelines. The goal being to accelerate how quickly teams can experiment and innovate using AI and machine learning (ML)—whether using natural language processing (NLP), generative AI, or other techniques. We discuss how this has helped decrease the time to market for fresh ideas and helped build a cost-efficient machine learning lifecycle.

Build a generative AI image description application with Anthropic’s Claude 3.5 Sonnet on Amazon Bedrock and AWS CDK

Build a generative AI image description application with Anthropic’s Claude 3.5 Sonnet on Amazon Bedrock and AWS CDK

In this post, we delve into the process of building and deploying a sample application capable of generating multilingual descriptions for multiple images with a Streamlit UI, AWS Lambda powered with the Amazon Bedrock SDK, and AWS AppSync driven by the open source Generative AI CDK Constructs.

Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless

Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless

In this post, we explore how to build a scalable and efficient Retrieval Augmented Generation (RAG) system using the new EMR Serverless integration, Spark’s distributed processing, and an Amazon OpenSearch Service vector database powered by the LangChain orchestration framework. This solution enables you to process massive volumes of textual data, generate relevant embeddings, and store them in a powerful vector database for seamless retrieval and generation.

Best practices for prompt engineering with Meta Llama 3 for Text-to-SQL use cases

Best practices for prompt engineering with Meta Llama 3 for Text-to-SQL use cases

In this post, we explore a solution that uses the vector engine ChromaDB and Meta Llama 3, a publicly available foundation model hosted on SageMaker JumpStart, for a Text-to-SQL use case. We shared a brief history of Meta Llama 3, best practices for prompt engineering with Meta Llama 3 models, and an architecture pattern using few-shot prompting and RAG to extract the relevant schemas stored as vectors in ChromaDB.

Implementing advanced prompt engineering with Amazon Bedrock

Implementing advanced prompt engineering with Amazon Bedrock

In this post, we provide insights and practical examples to help balance and optimize the prompt engineering workflow. We focus on advanced prompt techniques and best practices for the models provided in Amazon Bedrock, a fully managed service that offers a choice of high-performing foundation models from leading AI companies such as Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API. With these prompting techniques, developers and researchers can harness the full capabilities of Amazon Bedrock, providing clear and concise communication while mitigating potential risks or undesirable outputs.

Get started with NVIDIA NIM Inference Microservices on Amazon SageMaker

Accelerate Generative AI Inference with NVIDIA NIM Microservices on Amazon SageMaker

In this post, we provide a walkthrough of how customers can use generative artificial intelligence (AI) models and LLMs using NVIDIA NIM integration with SageMaker. We demonstrate how this integration works and how you can deploy these state-of-the-art models on SageMaker, optimizing their performance and cost.

Connect the Amazon Q Business generative AI coding companion to your GitHub repositories with Amazon Q GitHub (Cloud) connector

Connect the Amazon Q Business generative AI coding companion to your GitHub repositories with Amazon Q GitHub (Cloud) connector

In this post, we show you how to perform natural language queries over the indexed GitHub (Cloud) data using the AI-powered chat interface provided by Amazon Q Business. We also cover how Amazon Q Business applies access control lists (ACLs) associated with the indexed documents to provide permissions-filtered responses.

Build an end-to-end RAG solution using Knowledge Bases for Amazon Bedrock and the AWS CDK

Build an end-to-end RAG solution using Knowledge Bases for Amazon Bedrock and the AWS CDK

In this post, we demonstrate how to seamlessly automate the deployment of an end-to-end RAG solution using Knowledge Bases for Amazon Bedrock and the AWS Cloud Development Kit (AWS CDK), enabling organizations to quickly set up a powerful question answering system.

Index website contents using the Amazon Q Web Crawler connector for Amazon Q Business

Index website contents using the Amazon Q Web Crawler connector for Amazon Q Business

In this post, we demonstrate how to create an Amazon Q Business application and index website contents using the Amazon Q Web Crawler connector for Amazon Q Business. We use two data sources (websites) here. The first data source is an employee onboarding guide from a fictitious company, which requires basic authentication. We demonstrate how to set up authentication for the Web Crawler. The second data source is the official documentation for Amazon Q Business. For this data source, we demonstrate how to apply advanced settings to instruct the Web Crawler to crawl only pages and links related to Amazon Q Business.