AWS Machine Learning Blog

Category: Amazon SageMaker

Creating hierarchical label taxonomies using Amazon SageMaker Ground Truth

At re:Invent 2018 we launched Amazon SageMaker Ground Truth, which can Build Highly Accurate Datasets and Reduce Labeling Costs by up to 70% using machine learning. Amazon SageMaker Ground Truth offers easy access to public and private human labelers and provides them with built-in workflows and interfaces for common labeling tasks. Additionally, Amazon SageMaker Ground […]

Using TensorFlow eager execution with Amazon SageMaker script mode

In this blog post, I’ll discuss how to use Amazon SageMaker script mode to train models with TensorFlow’s eager execution mode. Eager execution is the future of TensorFlow; although it is available now as an option in recent versions of TensorFlow 1.x, it will become the default mode of TensorFlow 2. I’ll provide a brief […]

Annotate data for less with Amazon SageMaker Ground Truth and automated data labeling

With Amazon SageMaker Ground Truth, you can easily and inexpensively build more accurately labeled machine learning datasets. To decrease labeling costs, use Ground Truth machine learning to choose “difficult” images that require human annotation and “easy” images that can be automatically labeled with machine learning. This post explains how automated data labeling works and how […]

DXC Technology automates triage of support tickets using AWS machine learning

DXC Technology is a global IT service leader providing end-to-end services on Digital Transformation to businesses and governments. They also provide service management to their clients on-premises and in the cloud.  The incident tickets raised as part of the process need to be resolved quickly to meet their service level agreements (SLA).  DXC has  goals […]

Deploy trained Keras or TensorFlow models using Amazon SageMaker

This post was reviewed and updated May 2022, to enforce model results reproducibility, add reproducibility checks, and to add a batch transform example for model predictions. Previously, this post was updated March 2021 to include SageMaker Neo compilation. Updated the compatibility for model trained using Keras 2.2.x with h5py 2.10.0 and TensorFlow 1.15.3. Amazon SageMaker […]

Thoughts on Recent Research Paper and Associated Article on Amazon Rekognition

A research paper and associated article published yesterday made claims about the accuracy of Amazon Rekognition. We welcome feedback, and indeed get feedback from folks all the time, but this research paper and article are misleading and draw false conclusions. This blog post shares details which we hope will help clarify several ‎misperceptions and inaccuracies. […]

AWS launches open source Neo-AI project to accelerate ML deployments on edge devices

 At re:Invent 2018, we announced Amazon SageMaker Neo, a new machine learning feature that you can use to train a machine learning model once and then run it anywhere in the cloud and at the edge. Today, we are releasing the code as the open source Neo-AI project under the Apache Software License. This release […]

Ensure consistency in data processing code between training and inference in Amazon SageMaker

In this blog post, we’ll show you how to deploy an inference pipeline consisting of pre-processing using SparkML, inferences using XGBoost, and post-processing using SparkML. For this particular example, we are using the Car Evaluation Data Set from UCI’s Machine Learning Repository and training an XGBoost model to predict the condition of a car (i.e. unacceptable, acceptable, good, or very good).

Automated and continuous deployment of Amazon SageMaker models with AWS Step Functions

Amazon SageMaker is a complete machine learning (ML) workflow service for developing, training, and deploying models, lowering the cost of building solutions, and increasing the productivity of data science teams. Amazon SageMaker comes with many predefined algorithms. You can also create your own algorithms by supplying Docker images, a training image to train your model […]

Amazon SageMaker adds Scikit-Learn support

Amazon SageMaker now comes pre-configured with the Scikit-Learn machine learning library in a Docker container. Scikit-Learn is popular choice for data scientists and developers because it provides efficient tools for data analysis and high quality implementations of popular machine learning algorithms through a consistent Python interface and well documented APIs. Scikit-Learn executes quickly and can […]