Artificial Intelligence
Category: Amazon SageMaker
Enable faster training with Amazon SageMaker data parallel library
Large language model (LLM) training has become increasingly popular over the last year with the release of several publicly available models such as Llama2, Falcon, and StarCoder. Customers are now training LLMs of unprecedented size ranging from 1 billion to over 175 billion parameters. Training these LLMs requires significant compute resources and time as hundreds […]
How Getir reduced model training durations by 90% with Amazon SageMaker and AWS Batch
This is a guest post co-authored by Nafi Ahmet Turgut, Hasan Burak Yel, and Damla Şentürk from Getir. Established in 2015, Getir has positioned itself as the trailblazer in the sphere of ultrafast grocery delivery. This innovative tech company has revolutionized the last-mile delivery segment with its compelling offering of “groceries in minutes.” With a […]
Boosting developer productivity: How Deloitte uses Amazon SageMaker Canvas for no-code/low-code machine learning
The ability to quickly build and deploy machine learning (ML) models is becoming increasingly important in today’s data-driven world. However, building ML models requires significant time, effort, and specialized expertise. From data collection and cleaning to feature engineering, model building, tuning, and deployment, ML projects often take months for developers to complete. And experienced data […]
Experience the new and improved Amazon SageMaker Studio
Launched in 2019, Amazon SageMaker Studio provides one place for all end-to-end machine learning (ML) workflows, from data preparation, building and experimentation, training, hosting, and monitoring. As we continue to innovate to increase data science productivity, we’re excited to announce the improved SageMaker Studio experience, which allows users to select the managed Integrated Development Environment (IDE) […]
Amazon SageMaker simplifies setting up SageMaker domain for enterprises to onboard their users to SageMaker
As organizations scale the adoption of machine learning (ML), they are looking for efficient and reliable ways to deploy new infrastructure and onboard teams to ML environments. One of the challenges is setting up authentication and fine-grained permissions for users based on their roles and activities. For example, MLOps engineers typically perform model deployment activities, […]
Package and deploy classical ML and LLMs easily with Amazon SageMaker, part 2: Interactive User Experiences in SageMaker Studio
Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning (ML) models at scale. SageMaker makes it easy to deploy models into production directly through API calls to the service. Models are packaged into containers for robust and scalable deployments. SageMaker provides […]
Package and deploy classical ML and LLMs easily with Amazon SageMaker, part 1: PySDK Improvements
Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and effortlessly build, train, and deploy machine learning (ML) models at any scale. SageMaker makes it straightforward to deploy models into production directly through API calls to the service. Models are packaged into containers for robust and scalable deployments. Although […]
New – Code Editor, based on Code-OSS VS Code Open Source now available in Amazon SageMaker Studio
Today, we are excited to announce support for Code Editor, a new integrated development environment (IDE) option in Amazon SageMaker Studio. Code Editor is based on Code-OSS, Visual Studio Code Open Source, and provides access to the familiar environment and tools of the popular IDE that machine learning (ML) developers know and love, fully integrated […]
Scale foundation model inference to hundreds of models with Amazon SageMaker – Part 1
As democratization of foundation models (FMs) becomes more prevalent and demand for AI-augmented services increases, software as a service (SaaS) providers are looking to use machine learning (ML) platforms that support multiple tenants—for data scientists internal to their organization and external customers. More and more companies are realizing the value of using FMs to generate […]
Reduce model deployment costs by 50% on average using the latest features of Amazon SageMaker
As organizations deploy models to production, they are constantly looking for ways to optimize the performance of their foundation models (FMs) running on the latest accelerators, such as AWS Inferentia and GPUs, so they can reduce their costs and decrease response latency to provide the best experience to end-users. However, some FMs don’t fully utilize […]