Artificial Intelligence
Category: Amazon SageMaker
Integrate Amazon SageMaker Data Wrangler with MLOps workflows
As enterprises move from running ad hoc machine learning (ML) models to using AI/ML to transform their business at scale, the adoption of ML Operations (MLOps) becomes inevitable. As shown in the following figure, the ML lifecycle begins with framing a business problem as an ML use case followed by a series of phases, including […]
Predict shipment ETA with no-code machine learning using Amazon SageMaker Canvas
Logistics and transportation companies track ETA (estimated time of arrival), which is a key metric for their business. Their downstream supply chain activities are planned based on this metric. However, delays often occur, and the ETA might differ from the product’s or shipment’s actual time of arrival (ATA), for instance due to shipping distance or […]
Developing advanced machine learning systems at Trumid with the Deep Graph Library for Knowledge Embedding
This is a guest post co-written with Mutisya Ndunda from Trumid. Like many industries, the corporate bond market doesn’t lend itself to a one-size-fits-all approach. It’s vast, liquidity is fragmented, and institutional clients demand solutions tailored to their specific needs. Advances in AI and machine learning (ML) can be employed to improve the customer experience, […]
Organize your machine learning journey with Amazon SageMaker Experiments and Amazon SageMaker Pipelines
The process of building a machine learning (ML) model is iterative until you find the candidate model that is performing well and is ready to be deployed. As data scientists iterate through that process, they need a reliable method to easily track experiments to understand how each model version was built and how it performed. […]
Build taxonomy-based contextual targeting using AWS Media Intelligence and Hugging Face BERT
As new data privacy regulations like GDPR (General Data Protection Regulation, 2017) have come into effect, customers are under increased pressure to monetize media assets while abiding by the new rules. Monetizing media while respecting privacy regulations requires the ability to automatically extract granular metadata from assets like text, images, video, and audio files at […]
Identify rooftop solar panels from satellite imagery using Amazon Rekognition Custom Labels
Renewable resources like sunlight provide a sustainable and carbon neutral mechanism to generate power. Governments in many countries are providing incentives and subsidies to households to install solar panels as part of small-scale renewable energy schemes. This has created a huge demand for solar panels. Reaching out to potential customers at the right time, through […]
Build a news-based real-time alert system with Twitter, Amazon SageMaker, and Hugging Face
Today, social media is a huge source of news. Users rely on platforms like Facebook and Twitter to consume news. For certain industries such as insurance companies, first respondents, law enforcement, and government agencies, being able to quickly process news about relevant events occurring can help them take action while these events are still unfolding. […]
Achieve enterprise-grade monitoring for your Amazon SageMaker models using Fiddler
This is a guest blog post by Danny Brock, Rajeev Govindan and Krishnaram Kenthapadi at Fiddler AI. Your Amazon SageMaker models are live. They’re handling millions of inferences each day and driving better business outcomes for your company. They’re performing exactly as well as the day they were launched. Er, wait. Are they? Maybe. Maybe […]
Track your ML experiments end to end with Data Version Control and Amazon SageMaker Experiments
Data scientists often work towards understanding the effects of various data preprocessing and feature engineering strategies in combination with different model architectures and hyperparameters. Doing so requires you to cover large parameter spaces iteratively, and it can be overwhelming to keep track of previously run configurations and results while keeping experiments reproducible. This post walks […]
Build a predictive maintenance solution with Amazon Kinesis, AWS Glue, and Amazon SageMaker
Organizations are increasingly building and using machine learning (ML)-powered solutions for a variety of use cases and problems, including predictive maintenance of machine parts, product recommendations based on customer preferences, credit profiling, content moderation, fraud detection, and more. In many of these scenarios, the effectiveness and benefits derived from these ML-powered solutions can be further […]









