Artificial Intelligence
Category: Amazon SageMaker
Industrial automation at Tyson with computer vision, AWS Panorama, and Amazon SageMaker
This is the first in a two-part blog series on how Tyson Foods, Inc., is utilizing machine learning to automate industrial processes at their meat packing plants by bringing the benefits of artificial intelligence applications at the edge. In part one, we discuss an inventory counting application for packaging lines built using Amazon SageMaker and […]
Develop an automatic review image inspection service with Amazon SageMaker
This is a guest post by Jihye Park, a Data Scientist at MUSINSA. MUSINSA is one of the largest online fashion platforms in South Korea, serving 8.4M customers and selling 6,000 fashion brands. Our monthly user traffic reaches 4M, and over 90% of our demographics consist of teens and young adults who are sensitive to […]
How ReliaQuest uses Amazon SageMaker to accelerate its AI innovation by 35x
Cybersecurity continues to be a top concern for enterprises. Yet the constantly evolving threat landscape that they face makes it harder than ever to be confident in their cybersecurity protections.
To address this, ReliaQuest built GreyMatter, an Open XDR-as-a-Service platform that brings together telemetry from any security and business solution, whether on-premises or in one or multiple clouds, to unify detection, investigation, response, and resilience.
In 2021, ReliaQuest turned to AWS to help it enhance its artificial intelligence (AI) capabilities and build new features faster.
Deploying ML models using SageMaker Serverless Inference
Amazon SageMaker Serverless Inference was recently announced at re:Invent 2021 as a new model hosting feature that lets customers serve model predictions without having to explicitly provision compute instances or configure scaling policies to handle traffic variations. Serverless Inference is a new deployment capability that complements SageMaker’s existing options for deployment that include: SageMaker Real-Time […]
Take advantage of advanced deployment strategies using Amazon SageMaker deployment guardrails
Deployment guardrails in Amazon SageMaker provide a new set of deployment capabilities allowing you to implement advanced deployment strategies that minimize risk when deploying new model versions on SageMaker hosting. Depending on your use case, you can use a variety of deployment strategies to release new model versions. Each of these strategies relies on a […]
Train graph neural nets for millions of proteins on Amazon SageMaker and Amazon DocumentDB (with MongoDB compatibility)
There are over 180,000 unique proteins with 3D structures determined, with tens of thousands new structures resolved every year. This is only a small fraction of the 200 million known proteins with distinctive sequences. Recent deep learning algorithms such as AlphaFold can accurately predict 3D structures of proteins using their sequences, which help scale the […]
Introducing hybrid machine learning
Gartner predicts that by the end of 2024, 75% of enterprises will shift from piloting to operationalizing artificial intelligence (AI), and the vast majority of workloads will end up in the cloud in the long run. For some enterprises that plan to migrate to the cloud, the complexity, magnitude, and length of migrations may be […]
Use deep learning frameworks natively in Amazon SageMaker Processing
Until recently, customers who wanted to use a deep learning (DL) framework with Amazon SageMaker Processing faced increased complexity compared to those using scikit-learn or Apache Spark. This post shows you how SageMaker Processing has simplified running machine learning (ML) preprocessing and postprocessing tasks with popular frameworks such as PyTorch, TensorFlow, Hugging Face, MXNet, and […]
Build custom Amazon SageMaker PyTorch models for real-time handwriting text recognition
In many industries, including financial services, banking, healthcare, legal, and real estate, automating document handling is an essential part of the business and customer service. In addition, strict compliance regulations make it necessary for businesses to handle sensitive documents, especially customer data, properly. Documents can come in a variety of formats, including digital forms or […]
Achieve 35% faster training with Hugging Face Deep Learning Containers on Amazon SageMaker
Natural language processing (NLP) has been a hot topic in the AI field for some time. As current NLP models get larger and larger, data scientists and developers struggle to set up the infrastructure for such growth of model size. For faster training time, distributed training across multiple machines is a natural choice for developers. […]








