AWS Machine Learning Blog

Category: Intermediate (200)

Unlock the power of data governance and no-code machine learning with Amazon SageMaker Canvas and Amazon DataZone

Amazon DataZone is a data management service that makes it quick and convenient to catalog, discover, share, and govern data stored in AWS, on-premises, and third-party sources. Amazon DataZone allows you to create and manage data zones, which are virtual data lakes that store and process your data, without the need for extensive coding or […]

Migrate Amazon SageMaker Data Wrangler flows to Amazon SageMaker Canvas for faster data preparation

This post demonstrates how you can bring your existing SageMaker Data Wrangler flows—the instructions created when building data transformations—from SageMaker Studio Classic to SageMaker Canvas. We provide an example of moving files from SageMaker Studio Classic to Amazon Simple Storage Service (Amazon S3) as an intermediate step before importing them into SageMaker Canvas.

Use IP-restricted presigned URLs to enhance security in Amazon SageMaker Ground Truth

While presigned URLs offer a convenient way to grant temporary access to S3 objects, sharing these URLs with people outside of the workteam can lead to unintended access of those objects. To mitigate this risk and enhance the security of SageMaker Ground Truth labeling tasks, we have introduced a new feature that adds an additional layer of security by restricting access to the presigned URLs to the worker’s IP address or virtual private cloud (VPC) endpoint from which they access the labeling task. In this blog post, we show you how to enable this feature, allowing you to enhance your data security as needed, and outline the success criteria for this feature, including the scenarios where it will be most beneficial.

Unlock the power of structured data for enterprises using natural language with Amazon Q Business

In this post, we discuss an architecture to query structured data using Amazon Q Business, and build out an application to query cost and usage data in Amazon Athena with Amazon Q Business. Amazon Q Business can create SQL queries to your data sources when provided with the database schema, additional metadata describing the columns and tables, and prompting instructions. You can extend this architecture to use additional data sources, query validation, and prompting techniques to cover a wider range of use cases.

Perform generative AI-powered data prep and no-code ML over any size of data using Amazon SageMaker Canvas

Amazon SageMaker Canvas now empowers enterprises to harness the full potential of their data by enabling support of petabyte-scale datasets. Starting today, you can interactively prepare large datasets, create end-to-end data flows, and invoke automated machine learning (AutoML) experiments on petabytes of data—a substantial leap from the previous 5 GB limit. With over 50 connectors, […]

Derive generative AI-powered insights from ServiceNow with Amazon Q Business

This post shows how to configure the Amazon Q ServiceNow connector to index your ServiceNow platform and take advantage of generative AI searches in Amazon Q. We use an example of an illustrative ServiceNow platform to discuss technical topics related to AWS services.

Discover insights from Box with the Amazon Q Box connector

Seamless access to content and insights is crucial for delivering exceptional customer experiences and driving successful business outcomes. Box, a leading cloud content management platform, serves as a central repository for diverse digital assets and documents in many organizations. An enterprise Box account typically contains a wealth of materials, including documents, presentations, knowledge articles, and […]

Automate the machine learning model approval process with Amazon SageMaker Model Registry and Amazon SageMaker Pipelines

This post illustrates how to use common architecture principles to transition from a manual monitoring process to one that is automated. You can use these principles and existing AWS services such as Amazon SageMaker Model Registry and Amazon SageMaker Pipelines to deliver innovative solutions to your customers while maintaining compliance for your ML workloads.

Use the ApplyGuardrail API with long-context inputs and streaming outputs in Amazon Bedrock

As generative artificial intelligence (AI) applications become more prevalent, maintaining responsible AI principles becomes essential. Without proper safeguards, large language models (LLMs) can potentially generate harmful, biased, or inappropriate content, posing risks to individuals and organizations. Applying guardrails helps mitigate these risks by enforcing policies and guidelines that align with ethical principles and legal requirements.Amazon […]

Configure Amazon Q Business with AWS IAM Identity Center trusted identity propagation

Amazon Q Business comes with rich API support to perform administrative tasks or to build an AI-assistant with customized user experience for your enterprise. With administrative APIs you can automate creating Q Business applications, set up data source connectors, build custom document enrichment, and configure guardrails. With conversation APIs, you can chat and manage conversations with Q Business AI assistant. Trusted identity propagation provides authorization based on user context, which enhances the privacy controls of Amazon Q Business. In this blog post, you will learn what trusted identity propagation is and why to use it, how to automate configuration of a trusted token issuer in AWS IAM Identity Center with provided AWS CloudFormation templates, and what APIs to invoke from your application facilitate calling Amazon Q Business identity-aware conversation APIs.