Artificial Intelligence

Democratizing business intelligence: BGL’s journey with Claude Agent SDK and Amazon Bedrock AgentCore

BGL is a leading provider of self-managed superannuation fund (SMSF) administration solutions that help individuals manage the complex compliance and reporting of their own or a client’s retirement savings, serving over 12,700 businesses across 15 countries. In this blog post, we explore how BGL built its production-ready AI agent using Claude Agent SDK and Amazon Bedrock AgentCore.

AI agents in enterprises: Best practices with Amazon Bedrock AgentCore

This post explores nine essential best practices for building enterprise AI agents using Amazon Bedrock AgentCore. Amazon Bedrock AgentCore is an agentic platform that provides the services you need to create, deploy, and manage AI agents at scale. In this post, we cover everything from initial scoping to organizational scaling, with practical guidance that you can apply immediately.

Agentic AI for healthcare data analysis with Amazon SageMaker Data Agent

On November 21, 2025, Amazon SageMaker introduced a built-in data agent within Amazon SageMaker Unified Studio that transforms large-scale data analysis. In this post, we demonstrate, through a detailed case study of an epidemiologist conducting clinical cohort analysis, how SageMaker Data Agent can help reduce weeks of data preparation into days, and days of analysis development into hours—ultimately accelerating the path from clinical questions to research conclusions.

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

In this post, we illustrate how Clarus Care, a healthcare contact center solutions provider, worked with the AWS Generative AI Innovation Center (GenAIIC) team to develop a generative AI-powered contact center prototype. This solution enables conversational interaction and multi-intent resolution through an automated voicebot and chat interface. It also incorporates a scalable service model to support growth, human transfer capabilities–when requested or for urgent cases–and an analytics pipeline for performance insights.

Evaluating generative AI models with Amazon Nova LLM-as-a-Judge on Amazon SageMaker AI

Evaluating the performance of large language models (LLMs) goes beyond statistical metrics like perplexity or bilingual evaluation understudy (BLEU) scores. For most real-world generative AI scenarios, it’s crucial to understand whether a model is producing better outputs than a baseline or an earlier iteration. This is especially important for applications such as summarization, content generation, […]

Simplify ModelOps with Amazon SageMaker AI Projects using Amazon S3-based templates

This post explores how you can use Amazon S3-based templates to simplify ModelOps workflows, walk through the key benefits compared to using Service Catalog approaches, and demonstrates how to create a custom ModelOps solution that integrates with GitHub and GitHub Actions—giving your team one-click provisioning of a fully functional ML environment.

Scale AI in South Africa using Amazon Bedrock global cross-Region inference with Anthropic Claude 4.5 models

In this post, we walk through how global cross-Region inference routes requests and where your data resides, then show you how to configure the required AWS Identity and Access Management (IAM) permissions and invoke Claude 4.5 models using the global inference profile Amazon Resource Name (ARN). We also cover how to request quota increases for your workload. By the end, you’ll have a working implementation of global cross-Region inference in af-south-1.

Scaling content review operations with multi-agent workflow

The agent-based approach we present is applicable to any type of enterprise content, from product documentation and knowledge bases to marketing materials and technical specifications. To demonstrate these concepts in action, we walk through a practical example of reviewing blog content for technical accuracy. These patterns and techniques can be directly adapted to various content review needs by adjusting the agent configurations, tools, and verification sources.

Build reliable Agentic AI solution with Amazon Bedrock: Learn from Pushpay’s journey on GenAI evaluation

In this post, we walk you through Pushpay’s journey in building this solution and explore how Pushpay used Amazon Bedrock to create a custom generative AI evaluation framework for continuous quality assurance and establishing rapid iteration feedback loops on AWS.