Artificial Intelligence
Responsible AI for the payments industry – Part 2
In Part 1 of our series, we explored the foundational concepts of responsible AI in the payments industry. In this post, we discuss the practical implementation of responsible AI frameworks.
Process multi-page documents with human review using Amazon Bedrock Data Automation and Amazon SageMaker AI
In this post, we show how to process multi-page documents with a human review loop using Amazon Bedrock Data Automation and Amazon SageMaker AI.
Build an AI assistant using Amazon Q Business with Amazon S3 clickable URLs
In this post, we demonstrate how to build an AI assistant using Amazon Q Business that responds to user requests based on your enterprise documents stored in an S3 bucket, and how the users can use the reference URLs in the AI assistant responses to view or download the referred documents, and verify the AI responses to practice responsible AI.
GPT OSS models from OpenAI are now available on SageMaker JumpStart
Today, we are excited to announce the availability of Open AI’s new open weight GPT OSS models, gpt-oss-120b and gpt-oss-20b, from OpenAI in Amazon SageMaker JumpStart. With this launch, you can now deploy OpenAI’s newest reasoning models to build, experiment, and responsibly scale your generative AI ideas on AWS. In this post, we demonstrate how to get started with these models on SageMaker JumpStart.
Discover insights from Microsoft Exchange with the Microsoft Exchange connector for Amazon Q Business
Amazon Q Business is a fully managed, generative AI-powered assistant that helps enterprises unlock the value of their data and knowledge. With Amazon Q Business, you can quickly find answers to questions, generate summaries and content, and complete tasks by using the information and expertise stored across your company’s various data sources and enterprise systems. […]
Cost tracking multi-tenant model inference on Amazon Bedrock
In this post, we demonstrate how to track and analyze multi-tenant model inference costs on Amazon Bedrock using the Converse API’s requestMetadata parameter. The solution includes an ETL pipeline using AWS Glue and Amazon QuickSight dashboards to visualize usage patterns, token consumption, and cost allocation across different tenants and departments.
AI judging AI: Scaling unstructured text analysis with Amazon Nova
In this post, we highlight how you can deploy multiple generative AI models in Amazon Bedrock to instruct an LLM model to create thematic summaries of text responses. We then show how to use multiple LLM models as a jury to review these LLM-generated summaries and assign a rating to judge the content alignment between the summary title and summary description.
Building an AI-driven course content generation system using Amazon Bedrock
In this post, we explore each component in detail, along with the technical implementation of the two core modules: course outline generation and course content generation.
How Handmade.com modernizes product image and description handling with Amazon Bedrock and Amazon OpenSearch Service
In this post, we explore how Handmade.com, a leading hand-crafts marketplace, modernized their product description handling by implementing an AI-driven pipeline using Amazon Bedrock and Amazon OpenSearch Service. The solution combines Anthropic’s Claude 3.7 Sonnet LLM for generating descriptions, Amazon Titan Text Embeddings V2 for vector embedding, and semantic search capabilities to automate and enhance product descriptions across their catalog of over 60,000 items.
Introducing Amazon Bedrock AgentCore Browser Tool
In this post, we introduce the newly announced Amazon Bedrock AgentCore Browser Tool. We explore why organizations need cloud-based browser automation and the limitations it addresses for FMs that require real-time data access. We talk about key use cases and the core capabilities of the AgentCore Browser Tool. We walk through how to get started with the tool.









