AWS Machine Learning Blog
Tag: Amazon SageMaker Canvas
Govern generative AI in the enterprise with Amazon SageMaker Canvas
In this post, we analyze strategies for governing access to Amazon Bedrock and SageMaker JumpStart models from within SageMaker Canvas using AWS Identity and Access Management (IAM) policies. You’ll learn how to create granular permissions to control the invocation of ready-to-use Amazon Bedrock models and prevent the provisioning of SageMaker endpoints with specified SageMaker JumpStart models.
Harness the power of AI and ML using Splunk and Amazon SageMaker Canvas
For organizations looking beyond the use of out-of-the-box Splunk AI/ML features, this post explores how Amazon SageMaker Canvas, a no-code ML development service, can be used in conjunction with data collected in Splunk to drive actionable insights. We also demonstrate how to use the generative AI capabilities of SageMaker Canvas to speed up your data exploration and help you build better ML models.
Use weather data to improve forecasts with Amazon SageMaker Canvas
Photo by Zbynek Burival on Unsplash Time series forecasting is a specific machine learning (ML) discipline that enables organizations to make informed planning decisions. The main idea is to supply historic data to an ML algorithm that can identify patterns from the past and then use those patterns to estimate likely values about unseen periods […]
Optimizing costs for Amazon SageMaker Canvas with automatic shutdown of idle apps
Amazon SageMaker Canvas is a rich, no-code Machine Learning (ML) and Generative AI workspace that has allowed customers all over the world to more easily adopt ML technologies to solve old and new challenges thanks to its visual, no-code interface. It does so by covering the ML workflow end-to-end: whether you’re looking for powerful data […]
Build a machine learning model to predict student performance using Amazon SageMaker Canvas
There has been a paradigm change in the mindshare of education customers who are now willing to explore new technologies and analytics. Universities and other higher learning institutions have collected massive amounts of data over the years, and now they are exploring options to use that data for deeper insights and better educational outcomes. You […]
Enable intelligent decision-making with Amazon SageMaker Canvas and Amazon QuickSight
Every company, regardless of its size, wants to deliver the best products and services to its customers. To achieve this, companies want to understand industry trends and customer behavior, and optimize internal processes and data analyses on a routine basis. This is a crucial component of a company’s success. A very prominent part of the […]
Predict types of machine failures with no-code machine learning using Amazon SageMaker Canvas
Predicting common machine failure types is critical in manufacturing industries. Given a set of characteristics of a product that is tied to a given type of failure, you can develop a model that can predict the failure type when you feed those attributes to a machine learning (ML) model. ML can help with insights, but […]
Build, Share, Deploy: how business analysts and data scientists achieve faster time-to-market using no-code ML and Amazon SageMaker Canvas
April 2023: This post was reviewed and updated with Amazon SageMaker Canvas’s new features and UI changes. Machine learning (ML) helps organizations increase revenue, drive business growth, and reduce cost by optimizing core business functions across multiple verticals, such as demand forecasting, credit scoring, pricing, predicting customer churn, identifying next best offers, predicting late shipments, […]