Artificial Intelligence

Enabling customers to deliver production-ready AI agents at scale

Today, I’m excited to share how we’re bringing this vision to life with new capabilities that address the fundamental aspects of building and deploying agents at scale. These innovations will help you move beyond experiments to production-ready agent systems that can be trusted with your most critical business processes.

Supercharge your organization’s productivity with the Amazon Q Business browser extension

In this post, we showed how to use the Amazon Q Business browser extension to give your team seamless access to AI-driven insights and assistance. The browser extension is now available in US East (N. Virginia) and US West (Oregon) AWS Regions for Mozilla, Google Chrome, and Microsoft Edge as part of the Lite Subscription.

Build Agentic Workflows with OpenAI GPT OSS on Amazon SageMaker AI and Amazon Bedrock AgentCore

In this post, we show how to deploy gpt-oss-20b model to SageMaker managed endpoints and demonstrate a practical stock analyzer agent assistant example with LangGraph, a powerful graph-based framework that handles state management, coordinated workflows, and persistent memory systems.

Streamline access to ISO-rating content changes with Verisk rating insights and Amazon Bedrock

In this post, we dive into how Verisk Rating Insights, powered by Amazon Bedrock, large language models (LLM), and Retrieval Augmented Generation (RAG), is transforming the way customers interact with and access ISO ERC changes.

Unified multimodal access layer for Quora’s Poe using Amazon Bedrock

In this post, we explore how the AWS Generative AI Innovation Center and Quora collaborated to build a unified wrapper API framework that dramatically accelerates the deployment of Amazon Bedrock FMs on Quora’s Poe system. We detail the technical architecture that bridges Poe’s event-driven ServerSentEvents protocol with Amazon Bedrock REST-based APIs, demonstrate how a template-based configuration system reduced deployment time from days to 15 minutes, and share implementation patterns for protocol translation, error handling, and multi-modal capabilities.

Schedule topology-aware workloads using Amazon SageMaker HyperPod task governance

In this post, we introduce topology-aware scheduling with SageMaker HyperPod task governance by submitting jobs that represent hierarchical network information. We provide details about how to use SageMaker HyperPod task governance to optimize your job efficiency.

Enterprise HR system architecture with ProfileMap centrally connecting four key modules for comprehensive workforce management

How msg enhanced HR workforce transformation with Amazon Bedrock and msg.ProfileMap

In this post, we share how msg automated data harmonization for msg.ProfileMap, using Amazon Bedrock to power its large language model (LLM)-driven data enrichment workflows, resulting in higher accuracy in HR concept matching, reduced manual workload, and improved alignment with compliance requirements under the EU AI Act and GDPR.

Automated RAG pipeline

Automate advanced agentic RAG pipeline with Amazon SageMaker AI

In this post, we walk through how to streamline your RAG development lifecycle from experimentation to automation, helping you operationalize your RAG solution for production deployments with Amazon SageMaker AI, helping your team experiment efficiently, collaborate effectively, and drive continuous improvement.

Unlock model insights with log probability support for Amazon Bedrock Custom Model Import

In this post, we explore how log probabilities work with imported models in Amazon Bedrock. You will learn what log probabilities are, how to enable them in your API calls, and how to interpret the returned data. We also highlight practical applications—from detecting potential hallucinations to optimizing RAG systems and evaluating fine-tuned models—that demonstrate how these insights can improve your AI applications, helping you build more trustworthy solutions with your custom models.

Migrate from Anthropic’s Claude 3.5 Sonnet to Claude 4 Sonnet on Amazon Bedrock

This post provides a systematic approach to migrating from Anthropic’s Claude 3.5 Sonnet to Claude 4 Sonnet on Amazon Bedrock. We examine the key model differences, highlight essential migration considerations, and deliver proven best practices to transform this necessary transition into a strategic advantage that drives measurable value for your organization.

Enhance video understanding with Amazon Bedrock Data Automation and open-set object detection

In real-world video and image analysis, businesses often face the challenge of detecting objects that weren’t part of a model’s original training set. This becomes especially difficult in dynamic environments where new, unknown, or user-defined objects frequently appear. In this post, we explore how Amazon Bedrock Data Automation uses OSOD to enhance video understanding.