AWS 기술 블로그

Category: Amazon Bedrock

Amazon OpenSearch Service의 AI/ML 커넥터로 Neural 검색 강화

OpenSearch 2.9에서 Amazon OpenSearch Service의 Neural 검색 기능이 출시되며, AI/ML 모델과 통합하여 시맨틱 검색 및 다양한 검색 기능을 손쉽게 강화할 수 있습니다. OpenSearch Service는 2020년에 k-NN(k-최근접 이웃) 기능을 도입한 이래 어휘 검색과 벡터 검색을 모두 지원해 왔지만, 시맨틱 검색을 구성하려면 머신 러닝(ML) 모델을 통합하여 색인 및 검색할 수 있는 프레임워크를 구축해야 했습니다. Neural 검색 기능은 […]

Amazon Bedrock을 이용해 RAG, Fine tuning 없이 자동 고객 응대 서비스 구축하기

Generative AI를 이용한 고도화된 개인화 Gen AI(Generative AI, 생성형 AI)는 다양한 컨텐츠를 생성하는 기술로, 텍스트부터 이미지, 영상, 음악까지 다양한 영역에서 활용됩니다. 이를 위해 방대한 데이터와 사전 훈련된 대형 모델이 사용되며, 이러한 모델은 언어 이해, 텍스트 및 이미지 생성, 자연어 대화 등의 기능을 수행할 수 있습니다. Gen AI는 가파르게 발전하고 있으며 다양한 산업에서 고객 경험 개선, […]

Amazon OpenSearch Service Integration 기능을 활용한 손쉬운 임베딩 파이프라인 구성

서론 최근 자체적인 생성형 AI를 만들기 위한 여러가지 노력들이 있습니다. 특히 검색 증강 생성(Retrieval Augmented Generation, RAG) 모델을 활용하여 외부 소스의 정보를 사전에 지식 데이터베이스로 사용하며 생성형 AI 모델의 정확성과 신뢰성을 향상시키기 위해 다양한 방법으로 실험이 진행 되고 있습니다. Amazon OpenSearch Service는 Vector Database로 많은 사랑을 받고 있으며 2.9 버전부터 Neural Search 기능이 출시됨에 따라 […]

Amazon Bedrock Titan 이미지 생성기로 Amazon Rekognition 데이터 세트 만들기

Amazon의 완전관리형 이미지/비디오 검색 및 분석 서비스인 Amazon Rekognition의 경우, 데이터 과학자와 같은 전문 인력은 필요 없을 정도로 쉽게 딥러닝 모델을 학습, 배포할 수 있는 서비스를 제공하고 있습니다. 하지만, 커스텀 라벨링을 통한 비즈니스에 고유한 객체 인식 서비스를 개발하기 위한 학습/테스트용 데이터셋 중 특히 불량/이상 데이터의 경우, 사례 발생 건수가 부족하여 실 데이터 확보가 어려울 수 […]

Amazon Bedrock 기반 Amorepacific 리뷰 요약 서비스 평가 방법 구현하기

Amorepacific은 ‘사람을 아름답게, 세상을 아름답게’ 하는 뷰티 기업으로, 고객의 다양한 아름다움을 존중하며 혁신과 창의성을 통해 글로벌 뷰티 산업을 선도하는 기업입니다. Amorepacific은 설화수, 라네즈, 헤라, 이니스프리, 아이오페, 에뛰드 등 32개의 브랜드를 보유하고 있으며 최근 ‘Live Your New Beauty’ 슬로건 아래, 모든 고객이 자신만의 아름다움을 발견하고 실현하는 삶을 누리는 미래를 만들어나가고자 노력하고 있습니다. Amorepacific의 AI솔루션 팀은 최근 […]

AWS PrivateLink를 사용하여 Amazon Bedrock 프라이빗 접근 설정하기

이 글은 AWS Machine Learning Blog에 게시된 Use AWS PrivateLink to set up private access to Amazon Bedrock By Ram Vittal, Michael Daniels, and Ray Khorsandi를 한국어 번역 및 편집하였습니다. Amazon Bedrock은 AWS에서 제공하는 완전 관리형 서비스로, 개발자에게 여러 파운데이션 모델들과 각 모델들을 사용자의 어플리케이션에 맞게 커스터마이징할 수 있는 도구들을 제공합니다. 이를 통해 개발자는 인프라를 […]

Amazon Bedrock으로 그래프 RAG 구현하기

개요 대규모 언어 모델들은 방대한 데이터를 기반으로 광범위한 지식과 우수한 문장 생성 능력을 갖추고 있습니다. 그러나 이러한 모델들은 학습 시점 이후의 최신 정보나 특정 주제에 대한 심층 지식을 반영하는 데 한계가 있으며, 때때로 환각(hallucination) 문제로 답변의 정확성을 떨어뜨리기도 합니다. 이러한 문제를 해결하기 위해, RAG(Retrieval Augmented Generation) 프레임워크가 등장했습니다. RAG는 필요한 정보를 자체 데이터베이스에 저장하고 검색해, […]

Amazon Bedrock의 Claude와 Amazon Kendra로 향상된 RAG 사용하기

Amazon Bedrock의 Claude LLM v2.1은 200k token을 가지는 Context Window를 제공하고, 환각(Hallucination) 방지에서도 높은 성능을 보여주고 있습니다. 또한, Amazon Q에서는 Amazon Bedrock과 Amazon Kendra을 이용하여 다양한 데이터 소스를 통합하여 업무를 간소화하고, 빠른 의사결정 및 문제점 해결이 가능하도록, 즉각적이고 관련성 있는 정보와 조언을 제공하고 있습니다. 본 게시글은 Amazon Bedrock의 Claude LLM과 Amazon Kendra를 사용하여 RAG (Retrieval Augmented Generation)가 적용된 […]

한영 동시 검색 및 인터넷 검색을 활용하여 RAG를 편리하게 활용하기

기업의 중요한 문서를 검색하여 편리하게 활용하기 위하여 LLM(Large Language Model)을 활용하는 기업들이 늘어나고 있습니다. 기업의 모든 데이터를 사전 학습하는 것은 비용 및 시간에 대한 제약뿐 아니라 데이터 보안 면에서도 바람직하지 않을 수 있습니다. RAG(Retrieval-Augmented Generation)의 지식 저장소(Knowledge Store)를 활용하면, 다수의 문서를 안전하게 검색하여 관련된 문서(Relevant documents)를 추출한 후에 LLM에서 용도에 맞게 활용할 수 있습니다. RAG의 지식 […]

Multi-RAG와 Multi-Region LLM로 한국어 Chatbot 만들기

사전학습(pretrained)되지 않은 데이터나 민감한 정보를 가지고 있어서 사전학습 할 수 없는 기업의 중요한 데이터는 RAG(Retrieval-Augmented Generation)을 이용하여 LLM(Large Language Model)에서 이용될 수 있습니다. RAG는 지식저장소(Knowledge Store)의 연관성 검색(sementic search)을 이용해, 질문과 가장 가까운 문서를 LLM의 Context로 활용합니다. 이러한 지식저장소에는 대표적인 In-memory vector store인 Faiss, persistent store이면서 대용량 병렬처리가 가능한 Amazon OpenSearch와 완전관리형 검색서비스인 Amazon Kendra가 있습니다. 또한, 2023년 re:Invent에서는 Amazon Aurora, OpenSearch, […]