AWS Big Data Blog
AWS Big Data Analytics Sessions at re:Invent 2015
Roy Ben-Alta is a Business Development Manager – Big Data & Analytics If you will be attending re:Invent 2015 in Las Vegas next week, you know that you’ll have many opportunities to learn more about Big Data & Analytics on AWS at the conference–and this year we have over 20 sessions! The following breakout sessions compose this […]
How Coursera Manages Large-Scale ETL using AWS Data Pipeline and Dataduct
February 2023 Update: Console access to the AWS Data Pipeline service will be removed on April 30, 2023. On this date, you will no longer be able to access AWS Data Pipeline though the console. You will continue to have access to AWS Data Pipeline through the command line interface and API. Please note that […]
Scaling Writes on Amazon DynamoDB Tables with Global Secondary Indexes
Ian Meyers is a Solutions Architecture Senior Manager with AWS Amazon DynamoDB is a fast, flexible, and fully managed NoSQL database service that supports both document and key-value store models that need consistent, single-digit millisecond latency at any scale. In this post, we discuss a technique that can be used with DynamoDB to ensure virtually […]
Introduction to Python UDFs in Amazon Redshift
Christopher Crosbie is a Healthcare and Life Science Solutions Architect with Amazon Web Services When your doctor takes out a prescription pad at your yearly checkup, do you ever stop to wonder what goes into her thought process as she decides on which drug to scribble down? We assume that journals of scientific evidence coupled […]
Using BlueTalon with Amazon EMR
This is a guest post by Pratik Verma, Founder and Chief Product Officer at BlueTalon. Leonid Fedotov, Senior Solution Architect at BlueTalon, also contributed to this post. Amazon Elastic MapReduce (Amazon EMR) makes it easy to quickly and cost-effectively process vast amounts of data in the cloud. EMR gets used for log, financial, fraud, and […]
Integrating Amazon Kinesis, Amazon S3 and Amazon Redshift with Cascading on Amazon EMR
This is a guest post by Ryan Desmond, Solutions Architect at Concurrent. Concurrent is an AWS Advanced Technology Partner. With Amazon Kinesis developers can quickly store, collate and access large, distributed data streams such as access logs, click streams and IoT data in real-time. The question then becomes, how can we access and leverage this […]
Building and Maintaining an Amazon S3 Metadata Index without Servers
Mike Deck is a Solutions Architect with AWS Amazon S3 is a simple key-based object store whose scalability and low cost make it ideal for storing large datasets. Its design enables S3 to provide excellent performance for storing and retrieving objects based on a known key. Finding objects based on other attributes, however, requires doing […]
Implementing Efficient and Reliable Producers with the Amazon Kinesis Producer Library
Kevin Deng is an SDE with the Amazon Kinesis team and is the lead author of the Amazon Kinesis Producer Library How do you vertically scale an Amazon Kinesis producer application by 100x? While it’s easy to get started with streaming data into Amazon Kinesis, streaming large volumes of data efficiently and reliably presents some […]
Connecting R with Amazon Redshift
Markus Schmidberger is a Senior Big Data Consultant for AWS Professional Services Amazon Redshift is a fast, petabyte-scale cloud data warehouse for PB of data. AWS customers are moving huge amounts of structured data into Amazon Redshift to offload analytics workloads or to operate their DWH fully in the cloud. Business intelligence and analytic teams […]
Running R on AWS
Many AWS customers already use the popular open-source statistic software R for big data analytics and data science. Other customers have asked for instructions and best practices for running R on AWS. Several months ago, I (Markus) wrote a post showing you how to connect R with Amazon EMR, install RStudio on the Hadoop master node, and use R […]


