Artificial Intelligence

Category: Amazon Machine Learning

Deploy AI agents on Amazon Bedrock AgentCore using GitHub Actions

In this post, we demonstrate how to use a GitHub Actions workflow to automate the deployment of AI agents on AgentCore Runtime. This approach delivers a scalable solution with enterprise-level security controls, providing complete continuous integration and delivery (CI/CD) automation.

How the Amazon AMET Payments team accelerates test case generation with Strands Agents

In this post, we explain how we overcame the limitations of single-agent AI systems through a human-centric approach, implemented structured outputs to significantly reduce hallucinations and built a scalable solution now positioned for expansion across the AMET QA team and later across other QA teams in International Emerging Stores and Payments (IESP) Org.

Build a generative AI-powered business reporting solution with Amazon Bedrock

This post introduces generative AI guided business reporting—with a focus on writing achievements & challenges about your business—providing a smart, practical solution that helps simplify and accelerate internal communication and reporting.

Safeguard generative AI applications with Amazon Bedrock Guardrails

In this post, we demonstrate how you can address these challenges by adding centralized safeguards to a custom multi-provider generative AI gateway using Amazon Bedrock Guardrails.

Scale creative asset discovery with Amazon Nova Multimodal Embeddings unified vector search

In this post, we describe how you can use Amazon Nova Multimodal Embeddings to retrieve specific video segments. We also review a real-world use case in which Nova Multimodal Embeddings achieved a recall success rate of 96.7% and a high-precision recall of 73.3% (returning the target content in the top two results) when tested against a library of 170 gaming creative assets. The model also demonstrates strong cross-language capabilities with minimal performance degradation across multiple languages.

How AutoScout24 built a Bot Factory to standardize AI agent development with Amazon Bedrock

In this post, we explore the architecture that AutoScout24 used to build their standardized AI development framework, enabling rapid deployment of secure and scalable AI agents.

Securing Amazon Bedrock cross-Region inference: Geographic and global

In this post, we explore the security considerations and best practices for implementing Amazon Bedrock cross-Region inference profiles. Whether you’re building a generative AI application or need to meet specific regional compliance requirements, this guide will help you understand the secure architecture of Amazon Bedrock CRIS and how to properly configure your implementation.

Crossmodal search with Amazon Nova Multimodal Embeddings

In this post, we explore how Amazon Nova Multimodal Embeddings addresses the challenges of crossmodal search through a practical ecommerce use case. We examine the technical limitations of traditional approaches and demonstrate how Amazon Nova Multimodal Embeddings enables retrieval across text, images, and other modalities. You learn how to implement a crossmodal search system by generating embeddings, handling queries, and measuring performance. We provide working code examples and share how to add these capabilities to your applications.

Sentiment Analysis with Text and Audio Using AWS Generative AI Services: Approaches, Challenges, and Solutions

This post, developed through a strategic scientific partnership between AWS and the Instituto de Ciência e Tecnologia Itaú (ICTi), P&D hub maintained by Itaú Unibanco, the largest private bank in Latin America, explores the technical aspects of sentiment analysis for both text and audio. We present experiments comparing multiple machine learning (ML) models and services, discuss the trade-offs and pitfalls of each approach, and highlight how AWS services can be orchestrated to build robust, end-to-end solutions. We also offer insights into potential future directions, including more advanced prompt engineering for large language models (LLMs) and expanding the scope of audio-based analysis to capture emotional cues that text data alone might miss.