Artificial Intelligence
Category: Amazon Machine Learning
Explaining Bundesliga Match Facts xGoals using Amazon SageMaker Clarify
One of the most exciting AWS re:Invent 2020 announcements was a new Amazon SageMaker feature, purpose built to help detect bias in machine learning (ML) models and explain model predictions: Amazon SageMaker Clarify. In today’s world where predictions are made by ML algorithms at scale, it’s increasingly important for large tech organizations to be able […]
AI for AgriTech: Classifying Kiwifruits using Amazon Rekognition Custom Labels
Computer vision is a field of artificial intelligence (AI) that is gaining in popularity and interest largely due to increased access to affordable cloud-based training compute, more performant algorithms, and optimizations for scalable model deployment and inference. However, despite these advances in individual AI and machine learning (ML) domains, simplifying ML pipelines into coherent and […]
Batch image processing with Amazon Rekognition Custom Labels
Amazon Rekognition is a computer vision service that makes it easy to add image and video analysis to your applications using proven, highly scalable, deep learning technology that requires no machine learning (ML) expertise to use. With Amazon Rekognition, you can identify objects, people, text, scenes, and activities in images and videos, as well as […]
Translate video captions and subtitles using Amazon Translate
September 2021: This post and the solution has been updated to use the Amazon EventBridge events notifications in Amazon Translate for tracking Amazon Translate Batch Translation job completion. Video is a highly effective a highly effective way to educate, entertain, and engage users. Your company might carry a large collection of videos that include captions […]
Active learning workflow for Amazon Comprehend custom classification models – Part 2
Update Sep 2021: Amazon Comprehend has launched a suite of features for Comprehend Custom to enable continuous model improvements by giving developers the ability to version custom models, new training options for custom entity recognition models that reduce data preprocessing, ability to provide specific test sets during training, and live migration to new model endpoints. Refer to […]
Active learning workflow for Amazon Comprehend custom classification models – Part 1
Update Sep 2021: Amazon Comprehend has launched a suite of features for Comprehend Custom to enable continuous model improvements by giving developers the ability to version custom models, new training options for custom entity recognition models that reduce data preprocessing, ability to provide specific test sets during training, and live migration to new model endpoints. Refer to […]
Utilizing XGBoost training reports to improve your models
In 2019, AWS unveiled Amazon SageMaker Debugger, a SageMaker capability that enables you to automatically detect a variety of issues that may arise while a model is being trained. SageMaker Debugger captures model state data at specified intervals during a training job. With this data, SageMaker Debugger can detect training issues or anomalies by leveraging […]
Translate, redact, and analyze text using SQL functions with Amazon Athena, Amazon Translate, and Amazon Comprehend
October 2021 Update (v0.3.0): Added support for Amazon Comprehend DetectKeyPhrases You have Amazon Simple Storage Service (Amazon S3) buckets full of files containing incoming customer chats, product reviews, and social media feeds, in many languages. Your task is to identify the products that people are talking about, determine if they’re expressing happy thoughts or sad […]
Setting up Amazon Personalize with AWS Glue
Data can be used in a variety of ways to satisfy the needs of different business units, such as marketing, sales, or product. In this post, we focus on using data to create personalized recommendations to improve end-user engagement. Most ecommerce applications consume a huge amount of customer data that can be used to provide […]
Using container images to run TensorFlow models in AWS Lambda
TensorFlow is an open-source machine learning (ML) library widely used to develop neural networks and ML models. Those models are usually trained on multiple GPU instances to speed up training, resulting in expensive training time and model sizes up to a few gigabytes. After they’re trained, these models are deployed in production to produce inferences. […]