Artificial Intelligence
Category: Amazon SageMaker AI
Migrate MLflow tracking servers to Amazon SageMaker AI with serverless MLflow
This post shows you how to migrate your self-managed MLflow tracking server to a MLflow App – a serverless tracking server on SageMaker AI that automatically scales resources based on demand while removing server patching and storage management tasks at no cost. Learn how to use the MLflow Export Import tool to transfer your experiments, runs, models, and other MLflow resources, including instructions to validate your migration’s success.
Optimizing LLM inference on Amazon SageMaker AI with BentoML’s LLM- Optimizer
In this post, we demonstrate how to optimize large language model (LLM) inference on Amazon SageMaker AI using BentoML’s LLM-Optimizer to systematically identify the best serving configurations for your workload.
Advancing ADHD diagnosis: How Qbtech built a mobile AI assessment Model Using Amazon SageMaker AI
In this post, we explore how Qbtech streamlined their machine learning (ML) workflow using Amazon SageMaker AI, a fully managed service to build, train and deploy ML models, and AWS Glue, a serverless service that makes data integration simpler, faster, and more cost effective. This new solution reduced their feature engineering time from weeks to hours, while maintaining the high clinical standards required by healthcare providers.
Deploy Mistral AI’s Voxtral on Amazon SageMaker AI
In this post, we demonstrate hosting Voxtral models on Amazon SageMaker AI endpoints using vLLM and the Bring Your Own Container (BYOC) approach. vLLM is a high-performance library for serving large language models (LLMs) that features paged attention for improved memory management and tensor parallelism for distributing models across multiple GPUs.
Introducing SOCI indexing for Amazon SageMaker Studio: Faster container startup times for AI/ML workloads
Today, we are excited to introduce a new feature for SageMaker Studio: SOCI (Seekable Open Container Initiative) indexing. SOCI supports lazy loading of container images, where only the necessary parts of an image are downloaded initially rather than the entire container.
Tracking and managing assets used in AI development with Amazon SageMaker AI
In this post, we’ll explore the new capabilities and core concepts that help organizations track and manage models development and deployment lifecycles. We will show you how the features are configured to train models with automatic end-to-end lineage, from dataset upload and versioning to model fine-tuning, evaluation, and seamless endpoint deployment.
Track machine learning experiments with MLflow on Amazon SageMaker using Snowflake integration
In this post, we demonstrate how to integrate Amazon SageMaker managed MLflow as a central repository to log these experiments and provide a unified system for monitoring their progress.
How Tata Power CoE built a scalable AI-powered solar panel inspection solution with Amazon SageMaker AI and Amazon Bedrock
In this post, we explore how Tata Power CoE and Oneture Technologies use AWS services to automate the inspection process end-to-end.
Applying data loading best practices for ML training with Amazon S3 clients
In this post, we present practical techniques and recommendations for optimizing throughput in ML training workloads that read data directly from Amazon S3 general purpose buckets.
How Harmonic Security improved their data-leakage detection system with low-latency fine-tuned models using Amazon SageMaker, Amazon Bedrock, and Amazon Nova Pro
This post walks through how Harmonic Security used Amazon SageMaker AI, Amazon Bedrock, and Amazon Nova Pro to fine-tune a ModernBERT model, achieving low-latency, accurate, and scalable data leakage detection.









