Artificial Intelligence
Category: Amazon SageMaker AI
How Indegene’s AI-powered social intelligence for life sciences turns social media conversations into insights
This post explores how Indegene’s Social Intelligence Solution uses advanced AI to help life sciences companies extract valuable insights from digital healthcare conversations. Built on AWS technology, the solution addresses the growing preference of HCPs for digital channels while overcoming the challenges of analyzing complex medical discussions on a scale.
Automate AIOps with Amazon SageMaker Unified Studio projects, Part 1: Solution architecture
This post presents architectural strategies and a scalable framework that helps organizations manage multi-tenant environments, automate consistently, and embed governance controls as they scale their AI initiatives with SageMaker Unified Studio.
Fine-tune OpenAI GPT-OSS models on Amazon SageMaker AI using Hugging Face libraries
Released on August 5, 2025, OpenAI’s GPT-OSS models, gpt-oss-20b and gpt-oss-120b, are now available on AWS through Amazon SageMaker AI and Amazon Bedrock. In this post, we walk through the process of fine-tuning a GPT-OSS model in a fully managed training environment using SageMaker AI training jobs.
Process multi-page documents with human review using Amazon Bedrock Data Automation and Amazon SageMaker AI
In this post, we show how to process multi-page documents with a human review loop using Amazon Bedrock Data Automation and Amazon SageMaker AI.
Introducing AWS Batch Support for Amazon SageMaker Training jobs
AWS Batch now seamlessly integrates with Amazon SageMaker Training jobs. In this post, we discuss the benefits of managing and prioritizing ML training jobs to use hardware efficiently for your business. We also walk you through how to get started using this new capability and share suggested best practices, including the use of SageMaker training plans.
Customize Amazon Nova in Amazon SageMaker AI using Direct Preference Optimization
At the AWS Summit in New York City, we introduced a comprehensive suite of model customization capabilities for Amazon Nova foundation models. Available as ready-to-use recipes on Amazon SageMaker AI, you can use them to adapt Nova Micro, Nova Lite, and Nova Pro across the model training lifecycle, including pre-training, supervised fine-tuning, and alignment. In this post, we present a streamlined approach to customize Nova Micro in SageMaker training jobs.
Evaluating generative AI models with Amazon Nova LLM-as-a-Judge on Amazon SageMaker AI
Evaluating the performance of large language models (LLMs) goes beyond statistical metrics like perplexity or bilingual evaluation understudy (BLEU) scores. For most real-world generative AI scenarios, it’s crucial to understand whether a model is producing better outputs than a baseline or an earlier iteration. This is especially important for applications such as summarization, content generation, […]
Building enterprise-scale RAG applications with Amazon S3 Vectors and DeepSeek R1 on Amazon SageMaker AI
Organizations are adopting large language models (LLMs), such as DeepSeek R1, to transform business processes, enhance customer experiences, and drive innovation at unprecedented speed. However, standalone LLMs have key limitations such as hallucinations, outdated knowledge, and no access to proprietary data. Retrieval Augmented Generation (RAG) addresses these gaps by combining semantic search with generative AI, […]
How Rapid7 automates vulnerability risk scores with ML pipelines using Amazon SageMaker AI
In this post, we share how Rapid7 implemented end-to-end automation for the training, validation, and deployment of ML models that predict CVSS vectors. Rapid7 customers have the information they need to accurately understand their risk and prioritize remediation measures.
Advanced fine-tuning methods on Amazon SageMaker AI
When fine-tuning ML models on AWS, you can choose the right tool for your specific needs. AWS provides a comprehensive suite of tools for data scientists, ML engineers, and business users to achieve their ML goals. AWS has built solutions to support various levels of ML sophistication, from simple SageMaker training jobs for FM fine-tuning to the power of SageMaker HyperPod for cutting-edge research. We invite you to explore these options, starting with what suits your current needs, and evolve your approach as those needs change.