Artificial Intelligence

Category: Amazon SageMaker

How Amazon Search runs large-scale, resilient machine learning projects with Amazon SageMaker

If you have searched for an item to buy on amazon.com, you have used Amazon Search services. At Amazon Search, we’re responsible for the search and discovery experience for our customers worldwide. In the background, we index our worldwide catalog of products, deploy highly scalable AWS fleets, and use advanced machine learning (ML) to match […]

Increase ML model performance and reduce training time using Amazon SageMaker built-in algorithms with pre-trained models

Model training forms the core of any machine learning (ML) project, and having a trained ML model is essential to adding intelligence to a modern application. A performant model is the output of a rigorous and diligent data science methodology. Not implementing a proper model training process can lead to high infrastructure and personnel costs […]

InformedIQ automates verifications for Origence’s auto lending using machine learning

This post was co-written with Robert Berger and Adine Deford from InformedIQ. InformedIQ is the leader in AI-based software used by the nation’s largest financial institutions to automate loan processing verifications and consumer credit applications in real time per the lenders’ policies. They improve regulatory compliance, reduce cost, and increase accuracy by decreasing human error […]

An NHL faceoff shot from up top

Face-off Probability, part of NHL Edge IQ: Predicting face-off winners in real time during televised games

Face-off Probability is the National Hockey League’s (NHL) first advanced statistic using machine learning (ML) and artificial intelligence. It uses real-time Player and Puck Tracking (PPT) data to show viewers which player is likely to win a face-off before the puck is dropped, and provides broadcasters and viewers the opportunity to dive deeper into the […]

Reduce cost and development time with Amazon SageMaker Pipelines local mode

Creating robust and reusable machine learning (ML) pipelines can be a complex and time-consuming process. Developers usually test their processing and training scripts locally, but the pipelines themselves are typically tested in the cloud. Creating and running a full pipeline during experimentation adds unwanted overhead and cost to the development lifecycle. In this post, we […]

Create high-quality data for ML models with Amazon SageMaker Ground Truth

Machine learning (ML) has improved business across industries in recent years—from the recommendation system on your Prime Video account, to document summarization and efficient search with Alexa’s voice assistance. However, the question remains of how to incorporate this technology into your business. Unlike traditional rule-based methods, ML automatically infers patterns from data so as to […]

Celebrate over 20 years of AI/ML at Innovation Day

Be our guest as we celebrate 20 years of AI/ML innovation on October 25, 2022, 9:00 AM – 10:30 AM PT.  The first 1,500 people to register will receive $50 of AWS credits. Register here. Over the past 20 years, Amazon has delivered many world firsts for artificial intelligence (AI) and machine learning (ML). ML […]

Solution overview

Build flexible and scalable distributed training architectures using Kubeflow on AWS and Amazon SageMaker

In this post, we demonstrate how Kubeflow on AWS (an AWS-specific distribution of Kubeflow) used with AWS Deep Learning Containers and Amazon Elastic File System (Amazon EFS) simplifies collaboration and provides flexibility in training deep learning models at scale on both Amazon Elastic Kubernetes Service (Amazon EKS) and Amazon SageMaker utilizing a hybrid architecture approach. […]

Unified data preparation, model training, and deployment with Amazon SageMaker Data Wrangler and Amazon SageMaker Autopilot – Part 2

Depending on the quality and complexity of data, data scientists spend between 45–80% of their time on data preparation tasks. This implies that data preparation and cleansing take valuable time away from real data science work. After a machine learning (ML) model is trained with prepared data and readied for deployment, data scientists must often […]

How Sophos trains a powerful, lightweight PDF malware detector at ultra scale with Amazon SageMaker

This post is co-authored by Salma Taoufiq and Harini Kannan from Sophos. As a leader in next-generation cybersecurity, Sophos strives to protect more than 500,000 organizations and millions of customers across over 150 countries against evolving threats. Powered by threat intelligence, machine learning (ML), and artificial intelligence from Sophos X-Ops, Sophos delivers a broad and […]