AWS Machine Learning Blog
Category: Case Study
How InfoJobs (Adevinta) improves NLP model prediction performance with AWS Inferentia and Amazon SageMaker
This is a guest post co-written by Juan Francisco Fernandez, ML Engineer in Adevinta Spain, and AWS AI/ML Specialist Solutions Architects Antonio Rodriguez and João Moura. InfoJobs, a subsidiary company of the Adevinta group, provides the perfect match between candidates looking for their next job position and employers looking for the best hire for the […]
Optimize F1 aerodynamic geometries via Design of Experiments and machine learning
FORMULA 1 (F1) cars are the fastest regulated road-course racing vehicles in the world. Although these open-wheel automobiles are only 20–30 kilometers (or 12–18 miles) per-hour faster than top-of-the-line sports cars, they can speed around corners up to five times as fast due to the powerful aerodynamic downforce they create. Downforce is the vertical force […]
The Intel®3D Athlete Tracking (3DAT) scalable architecture deploys pose estimation models using Amazon Kinesis Data Streams and Amazon EKS
This blog post is co-written by Jonathan Lee, Nelson Leung, Paul Min, and Troy Squillaci from Intel. In Part 1 of this post, we discussed how Intel®3DAT collaborated with AWS Machine Learning Professional Services (MLPS) to build a scalable AI SaaS application. 3DAT uses computer vision and AI to recognize, track, and analyze over 1,000 […]
3xLOGIC uses Amazon Rekognition Streaming Video Events to provide intelligent video analytics on live video streams to monitoring agents
3xLOGIC is a leader in commercial electronic security systems. They provide commercial security systems and managed video monitoring for businesses, hospitals, schools, and government agencies. Managed video monitoring is a critical component of a comprehensive security strategy for 3xLOGIC’s customers. With more than 50,000 active cameras in the field, video monitoring teams face a daily […]
How Searchmetrics uses Amazon SageMaker to automatically find relevant keywords and make their human analysts 20% faster
Searchmetrics is a global provider of search data, software, and consulting solutions, helping customers turn search data into unique business insights. To date, Searchmetrics has helped more than 1,000 companies such as McKinsey & Company, Lowe’s, and AXA find an advantage in the hyper-competitive search landscape. In 2021, Searchmetrics turned to AWS to help with […]
How Moovit turns data into insights to help passengers avoid delays using Apache Airflow and Amazon SageMaker
This is a guest post by Moovit’s Software and Cloud Architect, Sharon Dahan. Moovit, an Intel company, is a leading Mobility as a Service (MaaS) solutions provider and creator of the top urban mobility app. Moovit serves over 1.3 billion riders in 3,500 cities around the world. We help people everywhere get to their destination […]
Part 4: How NatWest Group migrated ML models to Amazon SageMaker architectures
The adoption of AWS cloud technology at NatWest Group means moving our machine learning (ML) workloads to a more robust and scalable solution, while reducing our time-to-live to deliver the best products and services for our customers. In this cloud adoption journey, we selected the Customer Lifetime Value (CLV) model to migrate to AWS. The […]
Part 3: How NatWest Group built auditable, reproducible, and explainable ML models with Amazon SageMaker
This is the third post of a four-part series detailing how NatWest Group, a major financial services institution, partnered with AWS Professional Services to build a new machine learning operations (MLOps) platform. This post is intended for data scientists, MLOps engineers, and data engineers who are interested in building ML pipeline templates with Amazon SageMaker. […]
Part 2: How NatWest Group built a secure, compliant, self-service MLOps platform using AWS Service Catalog and Amazon SageMaker
This is the second post of a four-part series detailing how NatWest Group, a major financial services institution, partnered with AWS Professional Services to build a new machine learning operations (MLOps) platform. In this post, we share how the NatWest Group utilized AWS to enable the self-service deployment of their standardized, secure, and compliant MLOps […]
Part 1: How NatWest Group built a scalable, secure, and sustainable MLOps platform
This is the first post of a four-part series detailing how NatWest Group, a major financial services institution, partnered with AWS to build a scalable, secure, and sustainable machine learning operations (MLOps) platform. This initial post provides an overview of the AWS and NatWest Group joint team implemented Amazon SageMaker Studio as the standard for […]